A Barban-Davenport-Halberstam asymptotic for number fields
HTML articles powered by AMS MathViewer
- by Ethan Smith
- Proc. Amer. Math. Soc. 138 (2010), 2301-2309
- DOI: https://doi.org/10.1090/S0002-9939-10-10303-7
- Published electronically: March 3, 2010
- PDF | Request permission
Abstract:
Let $K$ be a fixed number field, and assume that $K$ is Galois over $\mathbb {Q}$. Previously, the author showed that when estimating the number of prime ideals with norm congruent to $a$ modulo $q$ via the Chebotarëv Density Theorem, the mean square error in the approximation is small when averaging over all $q\le Q$ and all appropriate $a$. In this article, we replace the upper bound by an asymptotic formula. The result is related to the classical Barban-Davenport-Halberstam Theorem in the case $K=\mathbb {Q}$.References
- M.B. Barban. On the distribution of primes in arithmetic progressions “on average”. Dokl. Akad. Nauk SSSR, 5:5–7, 1964 (Russian).
- H. Davenport and H. Halberstam, Primes in arithmetic progressions, Michigan Math. J. 13 (1966), 485–489. MR 200257, DOI 10.1307/mmj/1028999608
- H. Davenport and H. Halberstam, Corrigendum: “Primes in arithmetic progression”, Michigan Math. J. 15 (1968), 505. MR 233778, DOI 10.1307/mmj/1029000108
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931, DOI 10.1007/978-1-4757-5927-3
- Larry Joel Goldstein, A generalization of the Siegel-Walfisz theorem, Trans. Amer. Math. Soc. 149 (1970), 417–429. MR 274416, DOI 10.1090/S0002-9947-1970-0274416-6
- Jürgen G. Hinz, On the theorem of Barban and Davenport-Halberstam in algebraic number fields, J. Number Theory 13 (1981), no. 4, 463–484. MR 642922, DOI 10.1016/0022-314X(81)90038-X
- Christopher Hooley, On the Barban-Davenport-Halberstam theorem. I, J. Reine Angew. Math. 274(275) (1975), 206–223. MR 382202, DOI 10.1515/crll.1975.274-275.206
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- A. F. Lavrik, On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov, Soviet Math. Dokl. 1 (1960), 700–702. MR 0157955
- H. L. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17 (1970), 33–39. MR 257005, DOI 10.1307/mmj/1029000373
- M. Ram Murty, Problems in analytic number theory, Graduate Texts in Mathematics, vol. 206, Springer-Verlag, New York, 2001. Readings in Mathematics. MR 1803093, DOI 10.1007/978-1-4757-3441-6
- Ethan Smith, A generalization of the Barban-Davenport-Halberstam theorem to number fields, J. Number Theory 129 (2009), no. 11, 2735–2742. MR 2549528, DOI 10.1016/j.jnt.2009.05.005
- Robin J. Wilson, The large sieve in algebraic number fields, Mathematika 16 (1969), 189–204. MR 263774, DOI 10.1112/S0025579300008160
Bibliographic Information
- Ethan Smith
- Affiliation: Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295
- Email: ethans@mtu.edu
- Received by editor(s): July 28, 2009
- Received by editor(s) in revised form: October 15, 2009, and October 30, 2009
- Published electronically: March 3, 2010
- Communicated by: Ken Ono
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2301-2309
- MSC (2010): Primary 11N36, 11R44
- DOI: https://doi.org/10.1090/S0002-9939-10-10303-7
- MathSciNet review: 2607859