New thoughts on the vector-valued Mihlin–Hörmander multiplier theorem
HTML articles powered by AMS MathViewer
- by Tuomas P. Hytönen
- Proc. Amer. Math. Soc. 138 (2010), 2553-2560
- DOI: https://doi.org/10.1090/S0002-9939-10-10317-7
- Published electronically: March 11, 2010
- PDF | Request permission
Abstract:
Let $X$ be a UMD space with type $t$ and cotype $q$, and let $T_m$ be a Fourier multiplier operator with a scalar-valued symbol $m$. If $|\partial ^{\alpha }m(\xi )|\lesssim |{\xi }|^{-|\alpha |}$ for all $|\alpha |\leq \lfloor {n/\max (t,q’)\rfloor }+1$, then $T_m$ is bounded on $L^p(\mathbb {R}^n;X)$ for all $p\in (1,\infty )$. For scalar-valued multipliers, this improves the theorem of Girardi and Weis (J. Funct. Anal., 2003), who required similar assumptions for derivatives up to the order $\lfloor {n/r}\rfloor +1$, where $r\leq \min (t,q’)$ is a Fourier-type of $X$. However, the present method does not apply to operator-valued multipliers, which are also covered by the Girardi–Weis theorem.References
- A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365. MR 133653, DOI 10.1073/pnas.48.3.356
- Jean Bourgain, Vector-valued singular integrals and the $H^1$-BMO duality, Probability theory and harmonic analysis (Cleveland, Ohio, 1983) Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 1–19. MR 830227
- Thierry Fack, Type and cotype inequalities for noncommutative $L^p$-spaces, J. Operator Theory 17 (1987), no. 2, 255–279. MR 887222
- Maria Girardi and Lutz Weis, Operator-valued Fourier multiplier theorems on $L_p(X)$ and geometry of Banach spaces, J. Funct. Anal. 204 (2003), no. 2, 320–354. MR 2017318, DOI 10.1016/S0022-1236(03)00185-X
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Tuomas Hytönen, Fourier embeddings and Mihlin-type multiplier theorems, Math. Nachr. 274/275 (2004), 74–103. MR 2092325, DOI 10.1002/mana.200310203
- Tuomas Hytönen and Mark Veraar, $R$-boundedness of smooth operator-valued functions, Integral Equations Operator Theory 63 (2009), no. 3, 373–402. MR 2491037, DOI 10.1007/s00020-009-1663-4
- Terry R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), no. 2, 739–757. MR 752501, DOI 10.1090/S0002-9947-1984-0752501-X
- S. G. Mihlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 701–703 (Russian). MR 0080799
- D. Potapov and F. Sukochev. Operator-Lipschitz functions in Schatten-von Neumann classes. Preprint, arXiv:0904.4095, 2009.
- Lutz Weis, Stability theorems for semi-groups via multiplier theorems, Differential equations, asymptotic analysis, and mathematical physics (Potsdam, 1996) Math. Res., vol. 100, Akademie Verlag, Berlin, 1997, pp. 407–411. MR 1456208
- Lutz Weis and Volker Wrobel, Asymptotic behavior of $C_0$-semigroups in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3663–3671. MR 1327051, DOI 10.1090/S0002-9939-96-03373-4
- Frank Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math. 93 (1989), no. 3, 201–222. MR 1030488, DOI 10.4064/sm-93-3-201-222
Bibliographic Information
- Tuomas P. Hytönen
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
- Email: tuomas.hytonen@helsinki.fi
- Received by editor(s): September 17, 2009
- Received by editor(s) in revised form: November 23, 2009
- Published electronically: March 11, 2010
- Communicated by: Nigel J. Kalton
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2553-2560
- MSC (2010): Primary 42B15; Secondary 46B09, 46B20
- DOI: https://doi.org/10.1090/S0002-9939-10-10317-7
- MathSciNet review: 2607885