ANOTHER PROOF FOR THE REMOVABLE SINGULARITIES
OF THE HEAT EQUATION

KIN MING HUI

(Communicated by Yingfei Yi)

Abstract. We give two different simple proofs for the removable singularities
of the heat equation in \((\Omega \setminus \{x_0\}) \times (0, T)\), where \(x_0 \in \Omega \subset \mathbb{R}^n\) is a bounded
domain with \(n \geq 3\). We also give a necessary and sufficient condition for
removable singularities of the heat equation in \((\Omega \setminus \{x_0\}) \times (0, T)\) for the case
\(n = 2\).

Singularities of solutions of partial differential equations appear in many prob-
lems. For example, singularities appear in the study of the solutions of the harmonic
map \[13\] and the harmonic map heat flow \[3\]. In \[14\] S. Sato and E. Yanagida studied
the solutions for a semilinear parabolic equation with moving singularities. Sin-
gularities of solutions also appear in the study of hyperbolic partial differential equa-
tions \[15\] and in the study of the touchdown behavior of the micro-electromechanical
systems equation \[4\], \[6\], \[5\].

It is interesting to find a necessary and sufficient condition for the solutions of
the equations to have removable singularities. In \[8\] S.Y. Hsu proved the following
theorem.

Theorem 1. Let \(n \geq 3\) and let \(0 \in \Omega \subset \mathbb{R}^n\) be a domain. Suppose \(u\) is a solution
of the heat equation

\[u_t = \Delta u \]

in \((\Omega \setminus \{0\}) \times (0, T)\). Then \(u\) has removable singularities at \(0 \times (0, T)\) if and only
if for any \(0 < t_1 < t_2 < T\) and \(\delta \in (0, 1)\) there exists \(B_{R_0}(0) \subset \Omega\) depending on \(t_1, \ t_2\) and \(\delta\), such that

\[|u(x, t)| \leq \delta |x|^{2-n} \]

for any \(0 < |x| \leq R_0\) and \(t_1 \leq t \leq t_2\).

The proof in \[8\] is based on the Green function estimates of \[9\] and a careful
analysis of the behavior of the solution near the singularities using the Duhamel
principle. In this paper we will use the Schauder estimates for the heat equation \[2\],
\[12\], and the technique of \[1\] and \[7\] to give two different simple proofs of the above
result. We also obtain the following result for the solution of the heat equation in
two dimensions.
Theorem 2. Let \(0 \in \Omega \subset \mathbb{R}^2 \) be a domain. Suppose \(u \) is a solution of the heat equation in \((\Omega \setminus \{0\}) \times (0, T)\). Then \(u \) has removable singularities at \(\{0\} \times (0, T) \) if and only if for any \(0 < t_1 < t_2 < T \) and \(\delta \in (0, 1) \) there exists \(\overline{B}_{R_0}(0) \subset \Omega \) depending on \(t_1, t_2 \) and \(\delta \) such that

\[
|u(x, t)| \leq \delta (\log(1/|x|))^{-1}
\]

for any \(0 < |x| \leq R_0 \) and \(t_1 \leq t \leq t_2 \).

Remark 3. Note that the function \(\log |x| \) satisfies the heat equation in \((\mathbb{R}^2 \setminus \{0\}) \times (0, \infty)\), but it has non-removable singularities on \(\{0\} \times (0, \infty) \) and it does not satisfy (3). Hence (3) is sharp.

We start with some definitions. For any set \(A \) we let \(\chi_A \) be the characteristic function of the set \(A \). Let \(0 \in \Omega \subset \mathbb{R}^n \) be a bounded domain. We say that a solution \(u \) of the heat equation (1) in \((\Omega \setminus \{0\}) \times (0, T)\) has removable singularities at \(\{0\} \times (0, T) \) if there exists a classical solution \(v \) of (1) in \(\Omega \times (0, T) \) such that \(u = v \) in \((\Omega \setminus \{0\}) \times (0, T)\). For any \(R > 0 \) let \(B_R = B_R(0) = \{ x : |x| < R \} \subset \mathbb{R}^n \).

Proof of Theorem 1. Suppose \(u \) has removable singularities in \(\{0\} \times (0, T) \). By the same argument as in the proof in section 3 of [8], for any \(0 < t_1 < t_2 < T \) and \(\delta \in (0, 1) \) there exists \(\overline{B}_{R_0} \subset \Omega \) depending on \(t_1, t_2 \) and \(\delta \) such that (2) holds.

Suppose (2) holds. Then for any \(0 < t_1 < t_2 < T \) and \(\delta \in (0, 1) \) there exists \(\overline{B}_{R_0} \subset \Omega \) depending on \(t_1, t_2 \) and \(\delta \) such that (2) holds for any \(0 < |x| \leq R_0 \) and \(t_1 \leq t \leq t_2 \).

For any \(0 < |x| \leq R_0 \), let

\[
w(y, s) = u(|x|, |y|, |x|^2 s) \text{ } \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2.
\]

Then \(w \) is a solution of (1) in \((\overline{B}_1 \setminus \{0\}) \times (|x|^{-2} t_1, |x|^{-2} t_2)\). By (2),

\[
|w(y, s)| \leq \delta (|x||y|)^{2-n} \text{ } \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2.
\]

Let \(t_1 < t_3 < t_2 \). Then

\[
t_3/|x|^2 - t_1/|x|^2 \geq t_3 - t_1/R_0^2.
\]

By the parabolic Schauder estimates [2], [12], (5) and (6), there exists a constant \(C_1 > 0 \) such that

\[
|\nabla w(y, s)| \leq C_1 \text{ sup}_{1/2 \leq |z| \leq 1, |x|^{-2} t_1 \leq |z|^{-2} t_2} w(z, \tau) \leq C_2 \delta |x|^{2-n}
\]

holds for any \(2/3 \leq |y| \leq 3/4, t_3/|x|^2 \leq s \leq t_2/|x|^2 \), where \(C_2 = 2^{n-2} C_1 \). By (4) and (7),

\[
|\nabla u(z, t)\| \leq C_2 \delta |x|^{1-n} \text{ } \forall |z| = \frac{3}{4}|x|, 0 < |x| \leq R_0, t_3 \leq t \leq t_2
\]

holds for any \(2/3 \leq |y| \leq 3/4, t_3/|x|^2 \leq s \leq t_2/|x|^2 \), where \(C_2 = 2^{n-2} C_1 \). By (4) and (7),

\[
|\nabla u(z, t)| \leq C_2 \delta |x|^{1-n} \text{ } \forall |z| \leq \frac{3}{4} R_0, t_3 \leq t \leq t_2.
\]

Let \(R_1 = 3/(4R_0) \). We will now use a modification of the proof of Lemma 2.3 of [1] and Lemma 2.1 of [7] to complete the argument. We will first show that \(u \) satisfies
(1) in $\Omega \times (t_1, t_2)$ in the distribution sense. Since u satisfies (1) in $(\Omega \setminus \{0\}) \times (0, T)$, for any $0 < \varepsilon < R_1$ and $\eta \in C_0^\infty(\Omega \times (0, T))$ we have

$$
\int_{\Omega \setminus B_\varepsilon} u \eta \, dx \bigg|_{t_3}^{t_2} = \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} u \eta \, dx dt - \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx dt - \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt,
$$

(9)

where $\frac{\partial u}{\partial n}$ is the derivative of u with respect to the unit outward normal at ∂B_ε.

By (8),

$$
\limsup_{\varepsilon \to 0} \left| \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt \right| \leq C_2 \delta (t_2 - t_3) |\partial B_1| \|\eta\|_{L^\infty}.
$$

Since $\delta > 0$ is arbitrary, it follows that

$$
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt dtdx = 0.
$$

By (8) and the Lebesgue dominated convergence theorem,

$$
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx dt = \int_{t_3}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \eta \, dx dt.
$$

Letting $\varepsilon \to 0$ in (9), by (10) and (11) it follows that

$$
\int_{\Omega \setminus B_{R_0}} u \eta \, dx \bigg|_{t_3}^{t_2} = \int_{t_3}^{t_2} \int_{\Omega} u \eta \, dx dt - \int_{t_3}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \eta \, dx dt \quad \forall t_3 \in (t_1, t_2).
$$

Hence u is a distribution solution of (1) in $\Omega \times (t_1, t_2)$. By (2), for any $1 \leq p < \frac{n}{n-2}$ there exists a constant $C_p' > 0$ such that

$$
\sup_{t_1 \leq t \leq t_2} \int_{B_{R_0}} u(x, t)^p \, dx \leq C_p'.
$$

By (12) and (13) and an argument similar to the proof of [11] and section 1 of [10], $u \in L^\infty_{loc}(B_{R_0} \times (t_1, t_2))$. We now let v be the solution of

$$
\begin{cases}
 v_t = \Delta v & \text{in } B_{R_1} \times (t_3, t_2), \\
 \frac{\partial v}{\partial n}(x, t) = \frac{\partial u}{\partial n}(x, t) & \text{on } \partial B_{R_1} \times (t_3, t_2), \\
 v(x, t_3) = u(x, t_3) & \text{in } B_{R_1}.
\end{cases}
$$

(14)

For any $0 \leq h \in C_0^\infty(B_{R_1})$ and $t_3 < t \leq t_2$ let η be the solution of

$$
\begin{cases}
 \eta_t + \Delta \eta = 0 & \text{in } B_{R_1} \times (t_3, t), \\
 \frac{\partial \eta}{\partial n}(x, t) = 0 & \text{on } \partial B_{R_1} \times (t_3, t), \\
 \eta(x, t) = h(x) & \text{in } B_{R_1}.
\end{cases}
$$

(15)

By the maximum principle,

$$
0 \leq \eta \leq \|h\|_{L^\infty} \quad \text{in } B_{R_1} \times (t_3, t).
$$

(16)
Then by (14) and (15),
\[
(17) \quad \int_{B_{R_1} \setminus B_x} (u - v) \eta \, dx \bigg|_{t_3}^t = \int_{t_3}^t \int_{B_{R_1} \setminus B_x} [(u - v) \eta_t + (u - v) \eta] \, dx \, dt \\
= \int_{t_3}^t \int_{B_{R_1} \setminus B_x} [(u - v) \eta_t + \Delta(u - v) \eta] \, dx \, dt \\
= \int_{t_3}^t \int_{B_{R_1} \setminus B_x} (u - v) (\eta_t + \Delta \eta) \, dx \, dt \\
- \int_{t_3}^t \int_{\partial B_x} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt + \int_{t_3}^t \int_{\partial B_x} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt \\
= - \int_{t_3}^t \int_{\partial B_x} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt + \int_{t_3}^t \int_{\partial B_x} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt.
\]
By (2),
\[
(18) \quad \left| \int_{t_3}^t \int_{\partial B_x} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt \right| \leq C \varepsilon \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.
\]
By (8) and (16),
\[
(19) \quad \limsup_{\varepsilon \rightarrow 0} \left| \int_{t_3}^t \int_{\partial B_x} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt \right| \leq C \delta.
\]
Since \(\delta > 0 \) is arbitrary, by (19) it follows that
\[
(20) \quad \lim_{\varepsilon \rightarrow 0} \left| \int_{t_3}^t \int_{\partial B_x} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt \right| = 0.
\]
Letting \(\varepsilon \rightarrow 0 \) in (17), by (18) and (20),
\[
(21) \quad \int_{B_{R_1}} (u - v)(x,t) h(x) \, dx = \int_{B_{R_1}} (u - v)(x,t_3) \eta(x,t_3) \, dx = 0.
\]
We now choose a sequence of functions \(h_i \in C_0^\infty(B_{R_1}) \) converging to \(\chi_{\{u > v\}} \) a.e. \(x \in B_{R_1} \) as \(i \rightarrow \infty \). Putting \(h = h_i \) in (21) and letting \(i \rightarrow 0 \),
\[
(22) \quad \int_{B_{R_1}} (u - v)_+(x,t) \, dx = 0 \quad \forall t_3 < t \leq t_2.
\]
By interchanging the roles of \(u \) and \(v \) we get
\[
(23) \quad \int_{B_{R_1}} (v - u)_+(x,t) \, dx = 0 \quad \forall t_3 < t \leq t_2.
\]
Hence by (22) and (23),
\[
(24) \quad \Rightarrow \ u(x,t) = v(x,t) \quad \forall 0 < |x| \leq R_1, t_3 < t \leq t_2.
\]
Hence \(u \) has removable singularities on \(\{0\} \times (t_3, t_2) \). Since \(0 < t_1 < t_3 < t_2 < T \) is arbitrary, \(u \) has removable singularities on \(\{0\} \times (0, T) \) and the theorem follows. \(\square \)

Proof of Theorem 2. Theorem 2 follows by an argument very similar to the proof of Theorem 1 but with (3) replacing (2) in the argument. \(\square \)
An alternate proof of Theorems 1 and 2. We will show that when (2) (respectively (3)) holds, then \(u \) has removable singularities at \(\{0\} \times (0, T) \). Suppose (2) holds if \(n \geq 3 \) and (3) holds if \(n = 2 \). We first observe that by the previous argument, for any \(0 < t_1 < t_2 < T \), \(u \) satisfies (12) and \(u \in L^\infty_{\text{loc}}(\Omega \times (0, T)) \). Let \(\overline{B}_{R_1} \subset \Omega \) and let \(w \) be the solution of

\[
\begin{cases}
 w_t = \Delta w & \text{in } B_{R_1} \times (t_1, t_2), \\
 w = u & \text{on } \overline{B}_{R_1} \times \{t_1\} \cup \partial B_{R_1} \times (t_1, t_2).
\end{cases}
\]

By the maximum principle,

\[
\|w\|_{L^\infty} \leq \|u\|_{L^\infty(B_{R_1} \times (t_1, t_2))} < \infty.
\]

For any \(\varepsilon > 0 \), let

\[
w_\varepsilon = \begin{cases}
 w - u + \varepsilon |x|^{2-n} & \text{if } n \geq 3, \\
 w - u + \varepsilon (R_1/|x|) & \text{if } n = 2.
\end{cases}
\]

Then \(w_\varepsilon \) satisfies

\[
\begin{cases}
 w_{\varepsilon,t} = \Delta w_\varepsilon & \text{in } (B_{R_1} \setminus \{0\}) \times (t_1, t_2), \\
 w_\varepsilon \geq u & \text{on } \partial B_{R_1} \times (t_1, t_2) \cup \overline{B}_{R_1} \times \{t_1\}.
\end{cases}
\]

By (2), (3), and (25) there exists a constant \(0 < r_0 < R_1 \) such that

\[
w_\varepsilon \geq 0 \quad \text{on } \partial B_{r_1} \times [t_1, t_2]
\]

for all \(0 < r_1 \leq r_0 \). By the maximum principle in \((B_{R_1} \setminus B_{r_1}) \times (t_1, t_2) \),

\[
w_\varepsilon \geq 0 \quad \text{in } (B_{R_1} \setminus B_{r_1}) \times (t_1, t_2)
\]

\[
\implies \begin{cases}
 w - u + \varepsilon |x|^{2-n} \geq 0 & \forall \varepsilon \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n \geq 3, \\
 w - u + \varepsilon \log(R_0/|x|) \geq 0 & \forall \varepsilon \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n = 2
\end{cases}
\]

(26) \quad \implies w \geq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2 \text{ as } r_1 \to 0, \varepsilon \to 0.

Similarly, by considering the function

\[
v_\varepsilon = \begin{cases}
 w - u - \varepsilon |x|^{2-n} & \text{if } n \geq 3, \\
 w - u - \varepsilon \log(R_1/|x|) & \text{if } n = 2
\end{cases}
\]

and applying the maximum principle and letting \(\varepsilon \to 0 \), we get

\[
w \leq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2.
\]

By (26) and (27) we get (24), and Theorem 1 and Theorem 2 follow. \(\square \)

References

INSTITUTE OF MATHEMATICS, ACADEmia SINica, NANKANG, TAIPEI, 11529, TAIWAN, REPUBLIC OF CHINA