Best possible global bounds for Jensen functional
HTML articles powered by AMS MathViewer
- by Slavko Simic
- Proc. Amer. Math. Soc. 138 (2010), 2457-2462
- DOI: https://doi.org/10.1090/S0002-9939-10-10353-0
- Published electronically: March 10, 2010
- PDF | Request permission
Abstract:
We determine the form of the best possible global bounds for the Jensen functional on the real line. Thereby, previous results on this topic are essentially improved. Some applications in Analysis and Information Theory are also given.References
- Paul R. Beesack and Josip E. Pečarić, On Jessen’s inequality for convex functions, J. Math. Anal. Appl. 110 (1985), no. 2, 536–552. MR 805275, DOI 10.1016/0022-247X(85)90315-4
- I. Budimir, S. S. Dragomir, and J. Pečarić, Further reverse results for Jensen’s discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Article 5, 14. MR 1822298
- Sever S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–478. MR 2273755, DOI 10.1017/S000497270004051X
- S. S. Dragomir, A converse result for Jensen’s discrete inequality via Gruss’ inequality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7 (1999/00), 178–189. MR 1774897
- S. S. Dragomir and C. J. Goh, Some bounds on entropy measures in information theory, Appl. Math. Lett. 10 (1997), no. 3, 23–28. MR 1457634, DOI 10.1016/S0893-9659(97)00028-1
- Hardy G. H., Littlewood J. E., Pólya G.: Inequalities, Cambridge Univ. Press, Cambridge, 1988. MR0944909 (89d:26016)
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686, DOI 10.1007/978-3-642-99970-3
- Slavko Simic, Jensen’s inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), no. 8, 1262–1265. MR 2532551, DOI 10.1016/j.aml.2009.01.040
- Slavko Simic, On a global upper bound for Jensen’s inequality, J. Math. Anal. Appl. 343 (2008), no. 1, 414–419. MR 2412138, DOI 10.1016/j.jmaa.2008.01.060
- Wilhelm Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960), 91–98 (German). MR 0117309, DOI 10.1007/BF01180475
- Masaru Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Jpn. 55 (2002), no. 3, 583–588. MR 1901045
Bibliographic Information
- Slavko Simic
- Affiliation: Mathematical Institute Sanu, Kneza Mihaila 36, 11000 Belgrade, Serbia
- Email: ssimic@turing.mi.sanu.ac.rs
- Received by editor(s): September 27, 2009
- Published electronically: March 10, 2010
- Communicated by: Edward C. Waymire
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2457-2462
- MSC (2010): Primary 26B25, 26D20
- DOI: https://doi.org/10.1090/S0002-9939-10-10353-0
- MathSciNet review: 2607875