Towards a quantum Galois theory for quantum double algebras of finite groups
HTML articles powered by AMS MathViewer
- by Jiang Lining
- Proc. Amer. Math. Soc. 138 (2010), 2793-2801
- DOI: https://doi.org/10.1090/S0002-9939-10-10315-3
- Published electronically: March 17, 2010
- PDF | Request permission
Abstract:
Suppose that $G$ is a finite group and $D(G)$ the quantum double algebra of $G$. Let $\mathcal A$ be the field algebra of $G$-spin models. There is a natural action of $D(G)$ on $\mathcal A$ such that $\mathcal A$ becomes a $D(G)$-module algebra. For a subgroup $H$ of $G$, there is a Hopf subalgebra $D(G;H)$ of $D(G)$. Based on the concrete construction of a $D(G;H)$ fixed point subalgebra, the paper proves that $D(G;H)$ is Galois closed and thus gives a quantum Galois theory in the field algebra of $G$-spin models.References
- Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432
- Jeffrey Bergen, A correspondence theorem for modules over Hopf algebras, Proc. Amer. Math. Soc. 121 (1994), no. 2, 343–345. MR 1211578, DOI 10.1090/S0002-9939-1994-1211578-X
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- Stephen U. Chase and Moss E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin-New York, 1969. MR 0260724
- K. A. Dancer, P. S. Isac, and J. Links, Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation, J. Math. Phys. 47 (2006), no. 10, 103511, 18. MR 2268877, DOI 10.1063/1.2359575
- Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321. MR 1430435, DOI 10.1215/S0012-7094-97-08609-9
- V. O. Ferreira, L. S. I. Murakami, and A. Paques, A Hopf-Galois correspondence for free algebras, J. Algebra 276 (2004), no. 1, 407–416. MR 2054404, DOI 10.1016/S0021-8693(03)00502-7
- M. D. Gould, Quantum double finite group algebras and their representations, Bull. Austral. Math. Soc. 48 (1993), no. 2, 275–301. MR 1238802, DOI 10.1017/S0004972700015707
- Akihide Hanaki, Masahiko Miyamoto, and Daisuke Tambara, Quantum Galois theory for finite groups, Duke Math. J. 97 (1999), no. 3, 541–544. MR 1682988, DOI 10.1215/S0012-7094-99-09720-X
- Li Ning Jiang, The duality theorem in field algebra of $G$-spin model, Acta Math. Sinica (Chinese Ser.) 45 (2002), no. 1, 37–42 (Chinese, with English and Chinese summaries). MR 1923662
- Vaughan F. R. Jones, Subfactors and knots, CBMS Regional Conference Series in Mathematics, vol. 80, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR 1134131, DOI 10.1090/cbms/080
- Yasuyuki Kawahigashi, Quantum Galois correspondence for subfactors, J. Funct. Anal. 167 (1999), no. 2, 481–497. MR 1716205, DOI 10.1006/jfan.1999.3453
- H. F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), no. 5, 675–692. MR 625597, DOI 10.1512/iumj.1981.30.30052
- Geoffrey Mason, The quantum double of a finite group and its role in conformal field theory, Groups ’93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 405–417. MR 1337285, DOI 10.1017/CBO9780511629297.009
- F. Van Oystaeyen and Y. Zhang, Galois-type correspondences for Hopf-Galois extensions, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), 1994, pp. 257–269. MR 1291021, DOI 10.1007/BF00960864
- David E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), no. 2, 285–315. MR 1220770, DOI 10.1006/jabr.1993.1102
- K. Szlachányi and P. Vecsernyés, Quantum symmetry and braid group statistics in $G$-spin models, Comm. Math. Phys. 156 (1993), no. 1, 127–168. MR 1234107
- A. Van Daele and Y. H. Zhang, Galois theory for multiplier Hopf algebras with integrals, Algebr. Represent. Theory 2 (1999), no. 1, 83–106. MR 1688472, DOI 10.1023/A:1009938708033
- Tadashi Yanai, Galois correspondence theorem for Hopf algebra actions, Algebraic structures and their representations, Contemp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 393–411. MR 2147038, DOI 10.1090/conm/376/06974
- S. C. Zhang, Y. Z. Zhang, Hopf Galois extension braided tensor categories, arXiv:math.RA/0309448, 7, 19, April 2006.
Bibliographic Information
- Jiang Lining
- Affiliation: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- Email: jianglining@bit.edu.cn
- Received by editor(s): January 19, 2009
- Received by editor(s) in revised form: October 28, 2009
- Published electronically: March 17, 2010
- Additional Notes: This research is supported by the Program for New Century Excellent Talents in the University of China and by the National Science Foundation of China (10971011).
- Communicated by: Marius Junge
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2793-2801
- MSC (2010): Primary 46N50, 16T05
- DOI: https://doi.org/10.1090/S0002-9939-10-10315-3
- MathSciNet review: 2644893