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UNIFORMIZING LADDER SYSTEM COLORINGS AND THE

RECTANGLE REFINING PROPERTY

TERUYUKI YORIOKA

(Communicated by Julia Knight)

Abstract. We investigate forcing notions with the rectangle refining prop-
erty, which is stronger than the countable chain condition, and fragments of
Martin’s Axiom for such forcing notions. We prove that it is consistent that
every forcing notion with the rectangle refining property has precaliber ℵ1 but
MAℵ1

for forcing notions with the rectangle refining property fails.

1. Introduction

In the 1980s, Stevo Todorčević introduced and investigated some types of frag-
ments of Martin’s Axiom for ℵ1 dense sets, denoted by MAℵ1

, for example in [9].
In [11], Todorčević and Veličković proved the following theorem [11, Theorem 3.4]:
MAℵ1

is equivalent to the statement that all countable chain condition (ccc) forcing
notions have precaliber ℵ1; that is, for all ccc forcing notions P, every uncountable
subset of P has an uncountable subset which has the finite compatibility property
(i.e. every finitely many member has a common extension).

In [15], the author introduced a new chain condition, called the property R1,ℵ1
,

which is stronger than the countable chain condition. A typical forcing notion with
this property is a(T ), which is the forcing notion adding an antichain through an
Aronszajn tree T by finite approximations, and we note that MAℵ1

restricted to
forcing notions with the property R1,ℵ1

implies that every Aronszajn tree is special.
The author proved that it is consistent that every forcing notion with the property
R1,ℵ1

has precaliber ℵ1 and there exists a non-special Aronszajn tree; hence MAℵ1

restricted to forcing notions with the property R1,ℵ1
fails [15, Theorem 6.2]. This

is quite different from Todorčević and Veličković’s theorem [11, Theorem 3.4].
The aim of this paper is to show a similar result for the rectangle refining prop-

erty; that is, it is consistent that every forcing notion with the rectangle refining
property has precaliber ℵ1 and MAℵ1

restricted to forcing notions with the rectan-
gle refining property fails. The rectangle refining property is introduced by Larson
and Todorčević in [7] for partitions on [ω1]

2, and they introduced the axiom K2(rec)
which is the statement that every partition with the rectangle refining property has
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an uncountable homogeneous set. In [12], the author introduced a property for forc-
ing notions (called the anti-rectangle refining property) which is closely related to
the rectangle refining property for partitions, and in [15], he introduced the rectan-
gle refining property for forcing notions. In [15], there are some examples. A typical
forcing notion with this property is also a(T ). We note that if T is a Suslin tree,
then a(T ) does not have property K; in particular, a(T ) does not have precaliber
ℵ1. In [13], the author introduced a forcing notion with the rectangle refining prop-
erty which is related to an unbounded family of the structure (ωω, <∗), and using
this forcing notion, it was proved that K2(rec) implies that the bounding number
is larger than ℵ1. A remarkable point about the rectangle refining property (and
also the property R1,ℵ1

) is that forcing notions with the rectangle refining property
(or the property R1,ℵ1

) add no random reals [15, §5]. It is unknown whether the
rectangle refining property and the property R1,ℵ1

are different or not.
To show the main result, we investigate the following two concepts: uniformiza-

tions of ladder system colorings and forcing with a coherent Suslin tree.
In [1], Devlin and Shelah introduced a weak version of ♦ and its applications

to Whitehead’s problem and uniformizations of ladder system colorings. (In the
present paper, ladder systems means those on ω1. For details of ladder systems,
see §3.) The uniformization property of ladder system colorings plays a crucial role
in Whitehead’s problem. In fact, Eklof and Shelah proved in [2] that there exists
a ladder system all of whose 2-colorings can be uniformized iff there exists a non-
free Whitehead group of size ℵ1. In [1], Devlin and Shelah proved the following
theorem [1, Theorem 5.2]: MAℵ1

implies that every ladder system coloring can
be uniformized. We note that their forcing notions to uniformize a ladder system
coloring has precaliber ℵ1. In §3, we give a forcing notion with the rectangle
refining property which uniformizes a given ladder system coloring. In [12, §4] and
[15, §4], it was proved that MAℵ1

restricted to forcing notions with the rectangle
refining property is strictly weaker than MAℵ1

. So the result in §3 refines Devlin
and Shelah’s theorem [1, Theorem 5.2].

In [10], Todorčević introduced the model PFA(S)[S]. PFA(S) is an axiom which
asserts that there exists a coherent Suslin tree S such that the forcing axiom holds
for every proper forcing notion which preserves S as a Suslin tree; that is, if P is a
proper forcing notion which preserves S as a Suslin tree and {Dα;α ∈ ω1} is a set
of ℵ1-many dense open subsets of P, then there exists a filter of P which intersects
all of the Dα’s. PFA(S)[S] is a forcing extension with this S under PFA(S). We
note that if there exists a supercompact cardinal, PFA(S) can be forced by the
use of the property which is introduced by Miyamoto in [8]. PFA(S)[S] is used to
solve Katětov’s problem, which is a question of set theoretic topology, in [5], and
the model has some interesting properties. For example, in PFA(S)[S], OCA holds
([3]), K2(rec) holds ([7]), and every Aronszajn tree is special. In particular, we
should note that all of the above examples are satisfied in MAℵ1

(S)[S], which is
made the same as PFA(S)[S] by replacing the properness with the countable chain
condition. In [6, Theorem 6.2.], Larson and Todorčević proved that in the extension
with a Suslin tree, every ladder system has a coloring which cannot be uniformized.

In §4, it is proved that it is consistent that there exists a coherent Suslin tree
which forces the statement that every forcing notion with the rectangle refining
property has precaliber ℵ1 (Theorem 4.1). This is witnessed by the model of the
form MAℵ1

(S)[S] as well as of the form PFA(S)[S]. Therefore by the result in
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§3 and Larson and Todorčević’s theorem [6, Theorem 6.2.], MAℵ1
restricted to

forcing notions with the rectangle refining property fails in MAℵ1
(S)[S] and also in

PFA(S)[S].
The conclusion of Theorem 4.1 is different from [15, Theorem 6.2.]. Because in

the case [15, Theorem 6.2.], it is necessary that there exists a non-special Aronszajn
tree in the extension to guarantee that MAℵ1

for forcing notions with the property
R1,ℵ1

fails; however, in the case Theorem 4.1, by considering MAℵ1
(S)[S], it is

possible that all Aronszajn trees are special in the extension.

2. The class FSCOs and the rectangle refining property

In this paper, as in [15], forcing notions mean partial orders, and we focus on
forcing notions of size ℵ1 because we will study fragments of MAℵ1

, Martin’s Axiom
for ℵ1 many dense sets. We consider the following types of forcing notions, which
are slightly different from FSCO in [15] (see below).

Definition 2.1. FSCO0 is the collection of forcing notions P such that

• a condition of P is a finite set of countable ordinals,
• P is uncountable, and
• ≤P is equal to the superset relation ⊇; that is, for any σ and τ in P, σ ≤P τ

iff σ ⊇ τ .

Many applications of MAℵ1
use these types of forcing notions; see [15]. FSCO in

[15] is the set of forcing notions in FSCO0 with the additional property that P is
closed under subsets; that is, if σ ∈ P and τ ⊆ σ, then τ ∈ P. So FSCO0 is a wider
class than FSCO. In this paper, we deal with the subclass of FSCO0 as follows.

Definition 2.2. FSCO1 is the collection of forcing notions P in FSCO0 such that
for any uncountable subset I of P, there exists an uncountable subset I ′ of I such
that for every finite subset ρ of I ′, if ρ has a common extension in P,

⋃
ρ is one of

its common extensions.

FSCO1 is a wider class than FSCO. If P is in FSCO, since P is closed under
subsets and if a finite subset ρ of P has a common extension, then

⋃
ρ is its common

extension. So P belongs to FSCO1.

Definition 2.3. FSCO2 is the collection of forcing notions P in FSCO1 such that
for any uncountable subset {σα;α ∈ ω1} of P, there are an uncountable subset Γ of
ω1 and a sequence 〈σ′

α;α ∈ Γ〉 such that

• for each α ∈ Γ, σ′
α ≤P σα (i.e. σ′

α ⊇ σα),
• the set {σ′

α;α ∈ ω1} forms a Δ-system, and
• for every finite subset ρ of Γ, if the set {σ′

α;α ∈ ρ} has a common extension
in P, then

⋃
α∈ρ σ

′
α is its common extension and the set{

β ∈ Γ; {σ′
α;α ∈ ρ} ∪

{
σ′
β

}
has a common extension in P

}
is uncountable.

The definition of FSCO2 seems to be technical. But it follows from the next
claim that FSCO2 is also wider than the class of ccc forcing notions in FSCO.

Claim 2.4. If P is a forcing notion in FSCO with the countable chain condition,
then P belongs to FSCO2.
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Proof. Here, we note again that if a finite subset ρ of P has a common extension in
P, then

⋃
ρ is its common extension in P, because P is closed under subsets.

Let {σα;α ∈ ω1} be an uncountable subset of P. We take an uncountable subset
Γ of ω1 such that the set {σα;α ∈ Γ} forms a Δ-system. Since P is ccc, there exists
τ ∈ P such that

τ �P “ {σα;α ∈ Γ} ∩ Ġ is uncountable ”.

Then the set {σα ∪ τ ;α ∈ Γ} ∩ P are as desired. �

The following figure is a relationship between the subclasses of FSCO0.

FSCO0 ⊇ FSCO1 ⊇ FSCO2

⊆ ⊆

FSCO ⊇ FSCO+ CCC

Definition 2.5. A forcing notion P in FSCO0 has the rectangle refining property if
for any pair of uncountable subsets I and J of P, whenever I ∪J forms a Δ-system,
then there are uncountable subsets I ′ and J ′ of I and J respectively such that any
member of I ′ is compatible with any member of J ′ in P.

A typical forcing notion with this property is also a(T ). In [14], the author
introduced the rectangle refining property for general partial orders. It is easy to
see that a specializing Aronszajn tree by finite approximations has the rectangle
refining property in the sense of [14]. The definition in [14] includes that of the
present paper (for other examples, see [12, 13, 15]).

3. Uniformizing a ladder system coloring

A ladder system on ω1 is a sequence 〈Cα;α ∈ ω1 ∩ Lim〉 such that for each α ∈
ω1∩Lim, Cα is an unbounded subset of α and the order type of Cα is ω. A coloring
of the ladder system 〈Cα;α ∈ ω1 ∩ Lim〉 is a sequence 〈fα;α ∈ ω1 ∩ Lim〉 such that
for each α ∈ ω1 ∩ Lim, fα is a function from Cα into ω. We say that a function ϕ
from ω1 into ω uniformizes the coloring 〈fα;α ∈ ω1 ∩ Lim〉 if for every α ∈ ω1∩Lim,
the difference between fα and ϕ� dom(fα) is finite.

Let 〈Cα;α ∈ ω1 ∩ Lim〉 be a ladder system, let 〈ηαn ;n ∈ ω〉 be an increasing enu-
meration of Cα for each α ∈ ω1 ∩ Lim, and let 〈fα;α ∈ ω1 ∩ Lim〉 be a coloring of
this ladder. Then let

P (〈Cα;α ∈ ω1 ∩ Lim〉 , 〈fα;α ∈ ω1 ∩ Lim〉)
be a forcing notion which consists of finite partial functions p from ω1 ∩ Lim into ω
such that the set ⋃

γ∈dom(p)

(fγ� {ηγn;n ≥ p(γ)})

forms a function, and this is ordered by the reverse inclusion (in this section, it is
denoted by P for short). We note that P can be considered as a forcing notion in
FSCO, P adds a uniformizing function for this coloring, P has precaliber ℵ1, but
in general, P doesn’t have the rectangle refining property. (For example, if there
exist n ∈ ω and disjoint uncountable subsets I and J of ω1 ∩ Lim such that the set
{ηαn ;α ∈ I ∪ J} is a singleton and for every α ∈ I and β ∈ J , fα(η

α
n) 
= fβ(η

β
n),

then the pair of sets {{〈α, n〉} ;α ∈ I} and {{〈β, n〉} ;β ∈ J} is a witness which
guarantees that P doesn’t have the rectangle refining property.)
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We define another forcing notion for uniformizing a coloring. For a subset σ of
the set {0, 1} ×X and i ∈ {0, 1}, let

πi[σ] := {x ∈ X; 〈i, x〉 ∈ σ} .

The forcing notion

P2 (〈Cα;α ∈ ω1 ∩ Lim〉 , 〈fα;α ∈ ω1 ∩ Lim〉)

consists of subsets σ of the set(
{0} × ((ω1 ∩ Lim)× ω)

)
∪

(
{1} × (ω1 × ω)

)
such that

• π0[σ] ∈ P (〈Cα;α ∈ ω1 ∩ Lim〉 , 〈fα;α ∈ ω1 ∩ Lim〉),
• π1[σ] is the set{〈
ηγπ0[σ](γ)

, fγ(η
γ
π0[σ](γ)

)
〉
; γ ∈ dom(π0[σ])

}
∪

{
〈ηγn, fγ(ηγn)〉 ; γ ∈ dom(π0[σ]) and n ∈ ω \ π0[σ](γ)

such that ∃γ′ ∈ dom(π0[σ]) ∩ γ (ηγn < γ′)
}

(so π1[σ] is also a finite function),

and this is ordered by the reverse inclusion (in this section, it is denoted by P2 for
short).

P2 can also be considered as a forcing notion in FSCO and almost the same as
P. The difference is that a condition of P2 has information of finite pieces of the
coloring which is necessary to think about the compatibility of the conditions of P
(and also P2).

Lemma 3.1. P2 is a forcing notion in FSCO2 with the rectangle refining property.

Proof. By the definition, P2 is a forcing notion in FSCO0. At first, we show that
P2 has the rectangle refining property. The idea of this proof says that P2 belongs
to FSCO1.

Let I and J be disjoint uncountable subsets of ω1, and let {σα;α ∈ I ∪ J} be
an uncountable subset of P2 which forms a Δ-system. Let R be the root of this
Δ-system. Let δ be a countable ordinal such that R ⊆ {0, 1} × (δ × ω). Then we
can find uncountable subsets I ′ and J ′ of I and J respectively such that

(a) {σα;α ∈ I ′} ∩ {σα;α ∈ J ′} = ∅,
(b) for any α and β in the set I ′ ∪ J ′, if α < β, then

δ < min
((

dom(π0[σα]) \ δ
)
∪

(
dom(π1[σα]) \ δ

))
and

max
(
π0[σα]

)
< min

((
dom(π0[σβ ]) \ δ

)
∪

(
dom(π1[σβ ]) \ δ

))
.

Then we notice that the set {σα;α ∈ I ′ ∪ J ′} still forms a Δ-system with the root
R, and the function ⋃

γ∈dom(σα)

(
fγ�

(
{ηγn;n ≥ π0[σα](γ)} ∩ δ

))
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doesn’t depend on α ∈ I ′ ∪ J ′. Moreover since the domain of the function⋃
γ∈dom(σα)

(
fγ� {ηγn;n ≥ π0[σ](γ)}

)

is a subset of the set

δ ∪
[
min

((
dom(π0[σα]) \ δ

)
∪

(
dom(π1[σα] \ δ

)))
,max

(
dom(π0[σα])

))
for every α ∈ I ′∪J ′ (here, for two ordinals ξ and η, [ξ, η) is the interval of ordinals;
that is, [ξ, η) := {ζ ∈ η; ξ ≤ ζ}), σα and σβ are compatible in P2 for any α ∈ I ′ and
β ∈ J ′. In fact, for any finite subset ρ of I ′ ∪ J ′,

⋃
α∈ρ σα is a common extension

of the σα’s in P2. (This argument also says that P2 also has precaliber ℵ1.)
To show that P2 belongs to FSCO2, let {σα;α ∈ ω1} be an uncountable subset

of P2. We may assume that there exists δ ∈ ω1 such that {σα;α ∈ ω1} forms a Δ-
system with a root which is a subset of the set {0, 1}× δ, and {σα;α ∈ ω1} satisfies
the property (b) above.

Since P2 has the rectangle refining property (in particular the countable chain
condition), there exists τ ∈ P2 such that

τ �P2 “ {σα;α ∈ ω1} ∩ Ġ is uncountable ”.

Take α ∈ ω1 such that σα and τ are compatible in P2, and let τ ′ be an extension
of τ in P2 such that π0[τ

′] = π0[τ ] and σα ∪ τ ′ is a condition of P2 (hence it is a
common extension of σα and τ ). Then we note that for each β ∈ ω1 larger than
α, σβ and τ are compatible in P2 iff σβ ∪ τ ′ is a condition in P2. Therefore the set
{σβ ∪ τ ′;β ∈ ω1 \ α} ∩ P2 is as desired. �

4. Forcing with a coherent Suslin tree

This section contains a proof of the following theorem.

Theorem 4.1. It is consistent that there exists a coherent Suslin tree which forces
the statement that every forcing notion in FSCO2 with thathe rectangle refining
property has precaliber ℵ1.

Throughout this section, we suppose that S is a coherent Suslin tree which
consists of functions in ω<ω1 and is closed under finite modifications. That is,

• for any s and t in S, s ≤S t iff s ⊆ t,
• S is closed under taking initial segments,
• for any s and t in S, the set

{α ∈ min{lv (s) , lv (t)}; s(α) 
= t(α)}
is finite (here, lv (s) is the length of s, that is, the size of s, which represents
the level of s in the tree S), and

• for any s ∈ S and t ∈ ωlv(s), if the set {α ∈ lv (s) ; s(α) 
= t(α)} is finite,
then t ∈ S also.

For a countable ordinal α, let Sα be the set of α-th level nodes, that is, the set of
all members of S of domain α, and let S≤α :=

⋃
β≤α Sβ. For s ∈ S, we let

S�s := {u ∈ S; s ≤S u} .
We note that ♦, or adding a Cohen real, builds a coherent Suslin tree. A coherent

Suslin tree has canonical commutative isomorphisms. Let s and t be nodes in S
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with the same level. Then we define a function ψs,t from S�s into S�t such that for
each v ∈ S�s,

ψs,t(v) := t ∪ (v�[lv (s) , lv (v)))
(here, v�[lv (s) , lv (v)) is the function v restricted to the domain [lv (s) , lv (v))). We
note that ψs,t is an isomorphism, and if s, t, u are nodes in S with the same level,
then ψs,t, ψt,u and ψs,u commute. (On a coherent Suslin tree, see e.g. [4, 6].)

Let Ṗ be an S-name for a forcing notion in FSCO2 with the rectangle refining
property, İ = {σ̇α;α ∈ ω1} S-names for conditions of Ṗ which forms a Δ-system
such that

�T “ for any ρ ∈ [ω1]
<ℵ0 , if the set {σ̇α;α ∈ ρ} has a common extension in Ṗ,

then
⋃
α∈ρ

σ̇α ∈ P and

{β ∈ ω1; {σ̇α;α ∈ ρ} ∪ {σ̇β} has a common extension} is uncountable ”.

Since S has the countable chain condition, we can find a club C on ω1 such that
for every α ∈ C, every node in Sα decides all of the names σ̇β , for every β < α,

Ṗ ∩ [α]<ℵ0 and ≤
Ṗ
∩

(
[α]<ℵ0 × [α]<ℵ0

)
.

Let QS(Ṗ, İ , C) be the forcing notion which consists of finite partial functions f
from S into [ω1]

<ℵ0 such that for each t ∈ dom(f), f(t) ⊆ C ∩ lv (t), and

t �“
⋃

{σ̇γ ; ∃t′ ∈ dom(f) (t′ ≤S t & γ ∈ f(t′))} ∈ Ṗ ”

(which is equivalent to

t �“ {σ̇γ ; ∃t′ ∈ dom(fξ) (t
′ ≤S t & γ ∈ f(t′))} has a common extension ”),

and this is ordered by the reverse inclusion.
Suppose that QS(Ṗ, İ , C) has the countable chain condition and it preserves S to

be a Suslin tree. Then we note that, by the property of İ, if G is QS(Ṗ, İ , C)-generic,
then

⋃
G is a partial function such that for every t ∈ dom(

⋃
G) and α ∈ ω1, there

exists t′ ∈ dom(
⋃
G) such that t ≤S t′ and (

⋃
G) (t′) 
⊆ α. Therefore in the exten-

sion with QS(Ṗ, İ , C), S generically adds an uncountable set J of countable ordinals
such that, in the extension by an S-generic filter GS , the set {σ̇α[GS ];α ∈ J} has
the finite compatibility property. Therefore by considering the book-keeping argu-
ment of a finite support iteration or considering MAℵ1

(S)[S], we only have to show

that QS(Ṗ, İ , C) has the countable chain condition and preserves S to be Suslin.

It suffices to prove that QS(Ṗ, İ , C) × S has the countable chain condition. In [7,
Theorem 4.2], Larson and Todorčević proved that a coherent Suslin tree may force
K2(rec). The idea of the following proof is similar to their proof. The author used
a similar technique in [14, §3]. But the proof below is much simpler than ones in
[14, §3], because here we deal with much simpler structures than those in [14, §3].

Lemma 4.2. For any S, Ṗ, İ and C as above, QS(Ṗ, İ , C)× S has the countable
chain condition.

Proof. In this proof, QS(Ṗ, İ, C) is denoted by QS for short. Let {〈fξ, tξ〉 ; ξ ∈ ω1}
be an uncountable subset of QS × S. By strengthening conditions if necessary, we
may assume that for every ξ ∈ ω1,

tξ ∈ dom(fξ) ∩ Smax(lv[dom(fξ)]).
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By strengthening conditions again and shrinking the set {〈fξ, tξ〉 ; ξ ∈ ω1} if neces-
sary, we may moreover assume that there are δ ∈ ω1, m,n ∈ ω (m ≤ n) and s ∈ S
such that

• the set {dom(fξ); ξ ∈ ω1} forms a Δ-system with root which is a subset of
S≤δ;

• for every ξ and η in ω1,

dom(fξ) ∩ S≤δ = dom(fη) ∩ S≤δ and fξ�S≤δ = fη�S≤δ;

• for each ξ ∈ ω1, letting αξ := max (lv [dom(fξ)]), every node of the set
dom(fξ) \ Sαξ

(which is equal to dom(fξ) ∩ S<αξ
) is below some node of

the set dom(fξ) ∩ Sαξ
;

• for each ξ in ω1, the size of the set dom(fξ) ∩ Sαξ
is n, and let

dom(fξ) ∩ Sαξ
=

{
tξi ; i ∈ n

}
;

• there exists a sequence
〈
α′
ξ; ξ ∈ ω1

〉
of countable ordinals such that for each

ξ and η in ω1 with ξ < η,

δ < α′
ξ ≤ min (lv [dom(fξ) \ S≤δ]) < αξ = max (lv [dom(fξ)]) < α′

η

and {
β ∈ ω1; ∃i, j ∈ m

(
tξi (β) 
= tξj(β)

)}
⊆ δ ∪

[
α′
ξ, αξ

)
;

• for each ξ in ω1, tξ = tξ0 and for every j ∈ n, there exists a unique i ∈ m

such that tξj�α′
ξ = tξi �α′

ξ and tξi �
[
α′
ξ, αξ

)
= tξ0�

[
α′
ξ, αξ

)
;

• for every ξ and η in ω1 and i ∈ n, tξi �δ = tηi �δ;
• for each i ∈ n, the set{⋃{

fξ(t); t ∈ dom(fξ) & t ≤S tξi

}
; ξ ∈ ω1

}
forms a Δ-system with a root which is also a subset of δ;

• lv (s) = δ holds, s ≤S tξ0 = tξ for every ξ ∈ ω1, and the set
{
tξ0; ξ ∈ ω1

}
is

dense above s.

For each i ∈ n and ξ ∈ ω1, let

si := ψs,t0i �lv(s)(s) = t0i �lv (s)
and

�S “ τ̇ ξi :=
⋃{

σ̇γ ; ∃t ∈ dom(fξ)
(
t ≤S tξi & γ ∈ fξ(t)

)}
”.

Then by our Δ-system refinement, for every i ∈ n and ξ ∈ ω1, si <S tξi holds.

We enumerate the set {〈i, j〉 ∈ m× n; si = sj} by
〈〈
i0μ, i

1
μ

〉
;μ ∈ N

〉
with〈

i0N−1, i
1
N−1

〉
= 〈0, 0〉 ,

and we will recursively find S-names K̇0
μ and K̇1

μ and uncountable subsets J0
μ and

J1
μ of ω1 such that J0

−1 = J1
−1 = ω1 and for each μ ∈ N ,

• for each l ∈ {0, 1} (note that si0μ = si1μ),

si0μ �S “ K̇l
μ is an uncountable subset of the set

{
τ̇ ξ
ilμ
; ξ ∈ J l

μ−1

}
”;
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• for each l ∈ {0, 1} and any ξ ∈ J l
μ and u ∈ S, if

u �S “ τ̇ ξ
ilμ

∈ K̇l
μ ”,

then tξ
ilμ

≤S u and for every μ′ < μ,

ψtξ
ilμ

,tξ
il
μ′

(u) �S “ τ̇ ξ
il
μ′

∈ K̇l
μ′ ”;

• si0μ �S “ K̇0
μ ∩ K̇1

μ = ∅ and for every ε ∈ K̇0
μ and ρ ∈ K̇1

μ,

ε and ρ are compatible in Ṗ, i.e. ε ∪ ρ ∈ Ṗ ”;
and

• for each l ∈ {0, 1}, let

J l
μ :=

{
ξ ∈ J l

μ−1; ∃u ∈ T
(
u �S “ τ̇ ξ

ilμ
∈ K̇l

μ ”
)}

.

We can construct them by induction on μ ∈ N as follows. At stage μ ∈ N , we
define S-names K

∼

0
μ and K

∼

1
μ such that for each l ∈ {0, 1},

si0μ �S “ K
∼

l
μ ⊆

{
τ̇ ξ
ilμ
; ξ ∈ J l

μ−1

}
”,

and for any ξ ∈ J l
μ−1 and u ∈ S,

u �S “ τ̇ ξ
ilμ

∈ K
∼

l
μ ” : ⇐⇒ tξ

ilμ
≤S u & ∀μ′ < μ

(
ψtξ

ilμ
,tξ

il
μ′

(u) �S “ τ̇ ξ
il
μ′

∈ K̇μ′ ”

)
.

Since

silμ �S “ K
∼

0
μ and K

∼

1
μ are uncountable and K

∼

0
μ ∪K

∼

1
μ forms a Δ-system ”,

there are S-names K̇0
μ and K̇1

μ for uncountable subsets of K
∼

0
μ and K

∼

1
μ respectively

such that

silμ �S “ K̇0
μ ∩ K̇1

μ = ∅ and for every ε ∈ K̇0
μ and ρ ∈ K̇1

μ, ε ∪ ρ ∈ Ṗ ”,

which completes the construction.

Let ξ ∈ J0
N−1. Then there exists u ∈ S such that

u �S “ τ̇ ξ
i0N−1

∈ K̇0
N−1 ”.

Then by our construction, si0N−1
<S tξ

i0N−1
≤S u and for all μ < N − 1,

ψtξ
i0
N−1

,tξ
i0μ

(u) �S “ τ̇ ξi0μ
∈ K̇0

μ ”.

Since K̇1
N−1 is forced to be uncountable by u, there are v ∈ S and η ∈ ω1 such that

u <S v, αξ < lv (v), ξ < η, lv (u) < α′
η, and

v �S “ τ̇η
i1N−1

∈ K̇1
N−1 ”.

(Then we notice that η ∈ J1
N−1.) By our construction, we note that tη

i1N−1
≤S v

and for all μ < N − 1,

ψtη
i1
N−1

,tη
i1μ

(u) �S “ τ̇ηi1μ
∈ K̇1

μ ”.
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Since

tξ = tξ0 = tξ
i0N−1

≤S u <S v, tη = tη0 = tη
i1N−1

≤S v

and

lv (tξ) = αξ ≤ lv (u) < α′
η < αη = lv (tη) ≤ lv (v) ,

it holds that

tξ ≤S u <S tη ≤S v.

For each w ∈ dom(fη) \ S≤δ, there exists μw ∈ N such that w ≤S tηi1μw

. Then since

δ < αξ ≤ lv (u) < α′
η ≤ lv (w), by our Δ-system refinement, it holds that

tξi0μw

= si0μw
∪

(
tξi0μw

� [δ, αξ)
)
= si0μw

∪
(
tξ0� [δ, αξ)

)
= si0μw

∪ (tξ� [δ, αξ))

≤S si0μw
∪ (tη� [δ, αξ)) = si0μw

∪ (tη0� [δ, αξ)) = si0μw
∪

(
tηi0μw

� [δ, αξ)
)

= si1μw
∪

(
tηi1μw

� [δ, αξ)
)
≤S tηi1μw

;

hence

tξi0μw

<S w <S tηi1μw

≤S ψtη
i1N−1

,tη
i1μw

(v)

and

ψtξ
i0N−1

,tξ
i0μw

(u) = tξi0μw

∪ (u� [lv (αξ) , lv (u))) = tξi0μw

∪ (tη� [lv (αξ) , lv (u)))

= tηi1μw

�lv (u) ≤S ψtη
i1N−1

,tη
i1μw

(v).

It follows that

ψtη
i1
N−1

,tη
i1μw

(v) �S “ τ̇ ξi0μw

∈ K̇0
μw

and τ̇ηi1μw

∈ K̇1
μw

”,

so by the construction of S-names K̇0
μw

and K̇1
μw

and the property of the club C,

w �S “
⋃

{σ̇γ ; ∃t′ ∈ dom(fξ) (t
′ ≤S w & γ ∈ fξ(t

′))} ∈ Ṗ ”.

Therefore fξ∪fη is a condition of QS ; moreover, 〈fξ ∪ fη, tη〉 is a common extension
of 〈fξ, tξ〉 and 〈fη, tη〉. �
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