Fine asymptotic densities for sets of natural numbers
HTML articles powered by AMS MathViewer
- by Mauro Di Nasso
- Proc. Amer. Math. Soc. 138 (2010), 2657-2665
- DOI: https://doi.org/10.1090/S0002-9939-10-10351-7
- Published electronically: April 1, 2010
- PDF | Request permission
Abstract:
By allowing values in non-Archimedean extensions of the unit interval, we consider finitely additive measures that generalize the asymptotic density. The existence of a natural class of such “fine densities” is independent of ZFC.References
- A. Blass, R. Frankiewicz, G. Plebanek, and C. Ryll-Nardzewski, A note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3313–3320. MR 1845008, DOI 10.1090/S0002-9939-01-05941-X
- R. Creighton Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335–346. MR 54000, DOI 10.2307/2372456
- C. C. Chang and H. J. Keisler, Model theory, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR 1059055
- Vieri Benci and Mauro Di Nasso, Numerosities of labelled sets: a new way of counting, Adv. Math. 173 (2003), no. 1, 50–67. MR 1954455, DOI 10.1016/S0001-8708(02)00012-9
- M. Di Nasso and M. Forti, Numerosities of point sets over the real line, Trans. Amer. Math. Soc., to appear.
- M. Di Nasso and M. Forti, Special ultrafilters and asymptotic equinumerosities, in preparation.
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- Peter J. Hammond, Non-Archimedean subjective probabilities in decision theory and games, Math. Social Sci. 38 (1999), no. 2, 139–156. MR 1706001, DOI 10.1016/S0165-4896(99)00011-6
- H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
- A. Yu. Khrennikov, Generalized probabilities taking values in non-Archimedean fields and in topological groups, Russ. J. Math. Phys. 14 (2007), no. 2, 142–159. MR 2318826, DOI 10.1134/S1061920807020033
- Dorothy Maharam, Finitely additive measures on the integers, Sankhyā Ser. A 38 (1976), no. 1, 44–59. MR 473132
- Alan H. Mekler, Finitely additive measures on ${\rm \textbf {N}}$ and the additive property, Proc. Amer. Math. Soc. 92 (1984), no. 3, 439–444. MR 759670, DOI 10.1090/S0002-9939-1984-0759670-1
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets. MR 1477155, DOI 10.1007/978-1-4757-3845-2
- Saharon Shelah, Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR 1623206, DOI 10.1007/978-3-662-12831-2
- Edward L. Wimmers, The Shelah $P$-point independence theorem, Israel J. Math. 43 (1982), no. 1, 28–48. MR 728877, DOI 10.1007/BF02761683
Bibliographic Information
- Mauro Di Nasso
- Affiliation: Dipartimento di Matematica, Università di Pisa, Pisa, Italy
- MR Author ID: 610241
- Email: dinasso@dm.unipi.it
- Received by editor(s): August 21, 2009
- Received by editor(s) in revised form: October 10, 2009
- Published electronically: April 1, 2010
- Communicated by: Julia Knight
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 2657-2665
- MSC (2010): Primary 11B05, 03E05; Secondary 11R21
- DOI: https://doi.org/10.1090/S0002-9939-10-10351-7
- MathSciNet review: 2644882