Embedding general algebras into modules
HTML articles powered by AMS MathViewer
- by Michał M. Stronkowski and David Stanovský
- Proc. Amer. Math. Soc. 138 (2010), 2687-2699
- DOI: https://doi.org/10.1090/S0002-9939-10-10356-6
- Published electronically: April 9, 2010
- PDF | Request permission
Abstract:
The problem of embedding general algebras into modules is revisited. We provide a new method of embedding, based on Ježek’s embedding into semimodules. We obtain several interesting consequences: a simpler syntactic characterization of quasi-affine algebras, a proof that quasi-affine algebras without nullary operations are actually quasi-linear, and several facts regarding the “abelian iff quasi-affine” problem.References
- Richard H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944), 19–52. MR 9963, DOI 10.1090/S0002-9947-1944-0009963-X
- Ralph Freese and Ralph McKenzie, Residually small varieties with modular congruence lattices, Trans. Amer. Math. Soc. 264 (1981), no. 2, 419–430. MR 603772, DOI 10.1090/S0002-9947-1981-0603772-9
- Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR 909290
- Jonathan S. Golan, Semirings and affine equations over them: theory and applications, Mathematics and its Applications, vol. 556, Kluwer Academic Publishers Group, Dordrecht, 2003. MR 1997126, DOI 10.1007/978-94-017-0383-3
- H.-Peter Gumm, Algebras in permutable varieties: geometrical properties of affine algebras, Algebra Universalis 9 (1979), no. 1, 8–34. MR 508666, DOI 10.1007/BF02488013
- H. Peter Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79. MR 714648, DOI 10.1090/memo/0286
- Joachim Hagemann and Christian Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Arch. Math. (Basel) 32 (1979), no. 3, 234–245. MR 541622, DOI 10.1007/BF01238496
- U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, Series in Algebra, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. Translated from the 1993 German original. MR 1704233, DOI 10.1142/3903
- Christian Herrmann, Affine algebras in congruence modular varieties, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 119–125. MR 534504
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685, DOI 10.1090/conm/076
- Jaroslav Ježek, Terms and semiterms, Comment. Math. Univ. Carolin. 20 (1979), no. 3, 447–460. MR 550447
- Keith A. Kearnes, A quasi-affine representation, Internat. J. Algebra Comput. 5 (1995), no. 6, 673–702. MR 1365197, DOI 10.1142/S0218196795000276
- Keith A. Kearnes, Idempotent simple algebras, Logic and algebra (Pontignano, 1994) Lecture Notes in Pure and Appl. Math., vol. 180, Dekker, New York, 1996, pp. 529–572. MR 1404955
- Keith A. Kearnes and Ágnes Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), no. 4, 497–531. MR 1663558, DOI 10.1142/S0218196798000247
- Miklós Maróti and Ralph McKenzie, Existence theorems for weakly symmetric operations, Algebra Universalis 59 (2008), no. 3-4, 463–489. MR 2470592, DOI 10.1007/s00012-008-2122-9
- Ralph McKenzie, Finite equational bases for congruence modular varieties, Algebra Universalis 24 (1987), no. 3, 224–250. MR 931614, DOI 10.1007/BF01195263
- Ralph N. McKenzie, George F. McNulty, and Walter F. Taylor, Algebras, lattices, varieties. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. MR 883644
- Ralph McKenzie and John Snow, Congruence modular varieties: commutator theory and its uses, Structural theory of automata, semigroups, and universal algebra, NATO Sci. Ser. II Math. Phys. Chem., vol. 207, Springer, Dordrecht, 2005, pp. 273–329. MR 2210134, DOI 10.1007/1-4020-3817-8_{1}1
- D. C. Murdoch, Structure of abelian quasi-groups, Trans. Amer. Math. Soc. 49 (1941), 392–409. MR 3427, DOI 10.1090/S0002-9947-1941-0003427-2
- P. Němec and T. Kepka, $T$-quasigroups. I, II, Acta Univ. Carolin. Math. Phys. 12 (1971), no. 1, 39–49 (1972); ibid. 12 (1971), no. 2, 31–49 (1972). MR 320206
- Robert W. Quackenbush, Quasi-affine algebras, Algebra Universalis 20 (1985), no. 3, 318–327. MR 811692, DOI 10.1007/BF01195141
- Anna B. Romanowska and Jonathan D. H. Smith, Embedding sums of cancellative modes into functorial sums of affine spaces, Unsolved problems on mathematics for the 21st century, IOS, Amsterdam, 2001, pp. 127–139. MR 1896671
- Anna B. Romanowska and Jonathan D. H. Smith, Modes, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1932199, DOI 10.1142/4953
- Jonathan D. H. Smith, Mal′cev varieties, Lecture Notes in Mathematics, Vol. 554, Springer-Verlag, Berlin-New York, 1976. MR 0432511
- Jonathan D. H. Smith, An introduction to quasigroups and their representations, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2268350
- Michał M. Stronkowski, On embeddings of entropic algebras, Ph.D. thesis, Warsaw University of Technology, Warsaw, 2006.
- M. M. Stronkowski, Cancellation in entropic algebras, Algebra Universalis 60 (2009), no. 4, 439–468. MR 2504751, DOI 10.1007/s00012-009-2132-2
- —, Embedding entropic algebras into semimodules and modules, International Journal of Algebra and Computation 19 (2009), no. 8, 1025–1047.
- Ágnes Szendrei, Modules in general algebra, Contributions to general algebra, 10 (Klagenfurt, 1997) Heyn, Klagenfurt, 1998, pp. 41–53. MR 1648809
- Kôshichi Toyoda, On axioms of linear functions, Proc. Imp. Acad. Tokyo 17 (1941), 221–227. MR 14105
Bibliographic Information
- Michał M. Stronkowski
- Affiliation: Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warsaw, Poland – and – Eduard Čech Center, Charles University, Prague, Czech Republic
- ORCID: setImmediate$0.9627175977742138$5
- Email: m.stronkowski@mini.pw.edu.pl
- David Stanovský
- Affiliation: Department of Algebra, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
- Email: stanovsk@karlin.mff.cuni.cz
- Received by editor(s): August 14, 2009
- Received by editor(s) in revised form: November 29, 2009
- Published electronically: April 9, 2010
- Additional Notes: The first author was supported by the Eduard Čech Center Grant LC505 and by the Statutory Grant of Warsaw University of Technology 504G11200112000
The second author was supported by the institutional grant MSM 0021620839 and by the GAČR Grant #201/08/P056. - Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 2687-2699
- MSC (2010): Primary 08A05, 15A78, 16Y60
- DOI: https://doi.org/10.1090/S0002-9939-10-10356-6
- MathSciNet review: 2644885