Liouvillian first integrals for Liénard polynomial differential systems
HTML articles powered by AMS MathViewer
- by J. Llibre and C. Valls
- Proc. Amer. Math. Soc. 138 (2010), 3229-3239
- DOI: https://doi.org/10.1090/S0002-9939-10-10338-4
- Published electronically: April 9, 2010
- PDF | Request permission
Abstract:
We characterize the Liouvillian first integrals for the Liénard polynomial differential systems of the form $x’ = y$, $y’=-c x-f(x)y$, with $c \in \mathbb {R}$ and $f(x)$ is an arbitrary polynomial. For obtaining this result we need to find all the Darboux polynomials and the exponential factors of these systems.References
- Laurent Cairó, Hector Giacomini, and Jaume Llibre, Liouvillian first integrals for the planar Lotka-Volterra system, Rend. Circ. Mat. Palermo (2) 52 (2003), no. 3, 389–418. MR 2029552, DOI 10.1007/BF02872763
- Colin Christopher, Jaume Llibre, and Jorge Vitório Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math. 229 (2007), no. 1, 63–117. MR 2276503, DOI 10.2140/pjm.2007.229.63
- G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 2ème. série 2 (1878), 60–96; 123–144; 151–200.
- B. Garcia, J. Llibre and J.S. Pérez del Río, On the polynomial differential systems having polynomial first integrals, preprint, 2009.
- Simon Labrunie, On the polynomial first integrals of the $(a,b,c)$ Lotka-Volterra system, J. Math. Phys. 37 (1996), no. 11, 5539–5550. MR 1417159, DOI 10.1063/1.531721
- Jaume Llibre, Integrability of polynomial differential systems, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004, pp. 437–532. MR 2166493
- J. Llibre and C. Valls, On the local analytic integrability at the singular point of a class of Liénard analytic differential sytems, Proc. Amer. Math. Soc. 138 (2010), 253–261.
- Jean Moulin-Ollagnier, Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. Math. 121 (1997), no. 6, 463–476. MR 1477795
- Jean Moulin Ollagnier, Rational integration of the Lotka-Volterra system, Bull. Sci. Math. 123 (1999), no. 6, 437–466. MR 1712673, DOI 10.1016/S0007-4497(99)00111-6
- Jean Moulin Ollagnier, Liouvillian integration of the Lotka-Volterra system, Qual. Theory Dyn. Syst. 2 (2001), no. 2, 307–358. MR 1913289, DOI 10.1007/BF02969345
- Jean Moulin Ollagnier, Corrections and complements to: “Liouvillian integration of the Lotka-Volterra system” [Qual. Theory Dyn. Syst. 2 (2001), no. 2, 307–358; MR1913289], Qual. Theory Dyn. Syst. 5 (2004), no. 2, 275–284. MR 2275441, DOI 10.1007/BF02972682
- Kenzi Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), no. 1, 146–152. MR 1308609, DOI 10.1006/jdeq.1995.1008
- Michael F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), no. 2, 673–688. MR 1062869, DOI 10.1090/S0002-9947-1992-1062869-X
Bibliographic Information
- J. Llibre
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Catalonia, Spain
- MR Author ID: 115015
- ORCID: 0000-0002-9511-5999
- Email: jllibre@mat.uab.cat
- C. Valls
- Affiliation: Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal
- MR Author ID: 636500
- Email: cvalls@math.ist.utl.pt
- Received by editor(s): September 10, 2009
- Received by editor(s) in revised form: December 16, 2009
- Published electronically: April 9, 2010
- Communicated by: Yingfei Yi
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3229-3239
- MSC (2010): Primary 37K10, 34D30
- DOI: https://doi.org/10.1090/S0002-9939-10-10338-4
- MathSciNet review: 2653953