On the universal enveloping algebra of a Lie algebroid
Authors:
I. Moerdijk and J. Mrcun
Journal:
Proc. Amer. Math. Soc. 138 (2010), 3135-3145
MSC (2010):
Primary 17B35, 16T10, 16T15
DOI:
https://doi.org/10.1090/S0002-9939-10-10347-5
Published electronically:
March 24, 2010
MathSciNet review:
2653938
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We review the extent to which the structure of the universal enveloping algebra of a Lie algebroid over a manifold
resembles a Hopf algebra, and prove a Cartier-Milnor-Moore theorem for this type of structure.
- 1. Pierre Cartier, A primer of Hopf algebras, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 537–615. MR 2290769, https://doi.org/10.1007/978-3-540-30308-4_12
- 2. Marius Crainic and Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056, https://doi.org/10.4007/annals.2003.157.575
- 3. Robert L. Grossman and Richard G. Larson, Differential algebra structures on families of trees, Adv. in Appl. Math. 35 (2005), no. 1, 97–119. MR 2141507, https://doi.org/10.1016/j.aam.2005.01.001
- 4. J.-C. Herz, Pseudo-algèbres de Lie. I, II. C. R. Acad. Sci. Paris 236 (1953) 1935-1937, 2289-2291.
- 5. Mikhail Kapranov, Free Lie algebroids and the space of paths, Selecta Math. (N.S.) 13 (2007), no. 2, 277–319. MR 2361096, https://doi.org/10.1007/s00029-007-0041-9
- 6. V. K. Kharchenko, Automorphisms and derivations of associative rings, Mathematics and its Applications (Soviet Series), vol. 69, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by L. Yuzina. MR 1174740
- 7. Jean-Louis Loday, Generalized bialgebras and triples of operads, Astérisque 320 (2008), x+116 (English, with English and French summaries). MR 2504663
- 8. Jiang-Hua Lu, Hopf algebroids and quantum groupoids, Internat. J. Math. 7 (1996), no. 1, 47–70. MR 1369905, https://doi.org/10.1142/S0129167X96000050
- 9. Kirill C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, Cambridge, 2005. MR 2157566
- 10. G. Maltsiniotis, Groupoïdes quantiques de base non commutative, Comm. Algebra 28 (2000), no. 7, 3441–3501 (French, with English summary). MR 1765327, https://doi.org/10.1080/00927870008827035
- 11. John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 0174052, https://doi.org/10.2307/1970615
- 12. I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261
- 13. Janez Mrčun, The Hopf algebroids of functions on étale groupoids and their principal Morita equivalence, J. Pure Appl. Algebra 160 (2001), no. 2-3, 249–262. MR 1836002, https://doi.org/10.1016/S0022-4049(00)00071-2
- 14. Janez Mrčun, On duality between étale groupoids and Hopf algebroids, J. Pure Appl. Algebra 210 (2007), no. 1, 267–282. MR 2311185, https://doi.org/10.1016/j.jpaa.2006.09.006
- 15. Warren D. Nichols, The Kostant structure theorems for 𝐾/𝑘-Hopf algebras, J. Algebra 97 (1985), no. 2, 313–328. MR 812990, https://doi.org/10.1016/0021-8693(85)90052-3
- 16. W. Nichols and B. Weisfeiler, Differential formal groups of J. F. Ritt, Amer. J. Math. 104 (1982), no. 5, 943–1003. MR 675306, https://doi.org/10.2307/2374080
- 17. Victor Nistor, Alan Weinstein, and Ping Xu, Pseudodifferential operators on differential groupoids, Pacific J. Math. 189 (1999), no. 1, 117–152. MR 1687747, https://doi.org/10.2140/pjm.1999.189.117
- 18. Richard S. Palais, The cohomology of Lie rings, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 130–137. MR 0125867
- 19. Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 0258031, https://doi.org/10.2307/1970725
- 20. George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. MR 0154906, https://doi.org/10.1090/S0002-9947-1963-0154906-3
- 21. Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- 22. Moss E. Sweedler, Groups of simple algebras, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 79–189. MR 0364332
- 23. Floris Takens, Derivations of vector fields, Compositio Math. 26 (1973), 151–158. MR 0315723
- 24. Mitsuhiro Takeuchi, Groups of algebras over 𝐴⊗\overline𝐴, J. Math. Soc. Japan 29 (1977), no. 3, 459–492. MR 0506407, https://doi.org/10.2969/jmsj/02930459
- 25. David Winter, The structure of fields, Springer-Verlag, New York-Heidelberg, 1974. Graduate Texts in Mathematics, No. 16. MR 0389873
- 26. Ping Xu, Quantum groupoids and deformation quantization, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 3, 289–294 (English, with English and French summaries). MR 1648433, https://doi.org/10.1016/S0764-4442(97)82982-5
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B35, 16T10, 16T15
Retrieve articles in all journals with MSC (2010): 17B35, 16T10, 16T15
Additional Information
I. Moerdijk
Affiliation:
Mathematical Institute, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands
Email:
I.Moerdijk@uu.nl
J. Mrcun
Affiliation:
Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
Email:
janez.mrcun@fmf.uni-lj.si
DOI:
https://doi.org/10.1090/S0002-9939-10-10347-5
Received by editor(s):
September 28, 2009
Received by editor(s) in revised form:
December 17, 2009
Published electronically:
March 24, 2010
Additional Notes:
The second author was supported in part by the Slovenian Research Agency (ARRS) project J1-2247
Communicated by:
Gail R. Letzter
Article copyright:
© Copyright 2010
American Mathematical Society


