Generic properties of critical points of the scalar curvature for a Riemannian manifold
HTML articles powered by AMS MathViewer
- by Anna Maria Micheletti and Angela Pistoia
- Proc. Amer. Math. Soc. 138 (2010), 3277-3284
- DOI: https://doi.org/10.1090/S0002-9939-10-10382-7
- Published electronically: April 16, 2010
- PDF | Request permission
Abstract:
Given $(M,g)$ a smooth compact Riemannian $N-$manifold, we prove that for generic Riemannian metric $g$ the critical points of the scalar curvature are nondegenerate.References
- Vieri Benci, Claudio Bonanno, and Anna Maria Micheletti, On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds, J. Funct. Anal. 252 (2007), no. 2, 464–489. MR 2360924, DOI 10.1016/j.jfa.2007.07.010
- Jaeyoung Byeon and Junsang Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations 24 (2005), no. 4, 459–477. MR 2180862, DOI 10.1007/s00526-005-0339-4
- E. N. Dancer, A. M. Micheletti, and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds, Manuscripta Math. 128 (2009), no. 2, 163–193. MR 2471314, DOI 10.1007/s00229-008-0225-4
- Ghimenti, M.; Micheletti A.M., On the number of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds. Electronic Journal of Differential Equations (to appear).
- Norimichi Hirano, Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold, Nonlinear Anal. 70 (2009), no. 2, 671–692. MR 2468411, DOI 10.1016/j.na.2008.01.020
- Anna Maria Micheletti and Angela Pistoia, The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds, Calc. Var. Partial Differential Equations 34 (2009), no. 2, 233–265. MR 2448651, DOI 10.1007/s00526-008-0183-4
- Anna Maria Micheletti and Angela Pistoia, Nodal solutions for a singularly perturbed nonlinear elliptic problem on Riemannian manifolds, Adv. Nonlinear Stud. 9 (2009), no. 3, 565–577. MR 2536955, DOI 10.1515/ans-2009-0308
- Frank Quinn, Transversal approximation on Banach manifolds, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 213–222. MR 0264713
- J.-C. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (1979), no. 3, 293–319. MR 522714, DOI 10.1080/03605307908820096
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041
- D. Visetti, Multiplicity of solutions of a zero mass nonlinear equation on a Riemannian manifold, J. Differential Equations 245 (2008), no. 9, 2397–2439. MR 2455770, DOI 10.1016/j.jde.2008.03.002
Bibliographic Information
- Anna Maria Micheletti
- Affiliation: Dipartimento di Matematica Applicata “U. Dini”, Università di Pisa, via F. Buonarroti 1/c, 56100 Pisa, Italy
- Email: a.micheletti@dma.unipi.it
- Angela Pistoia
- Affiliation: Dipartimento di Metodi e Modelli Matematici, Università di Roma “La Sapienza”, via Antonio Scarpa 16, 00161 Roma, Italy
- Email: pistoia@dmmm.uniroma1.it
- Received by editor(s): April 13, 2009
- Published electronically: April 16, 2010
- Additional Notes: The authors were supported by Mi.U.R. project “Metodi variazionali e topologici nello studio di fenomeni non lineari”.
- Communicated by: Matthew J. Gursky
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3277-3284
- MSC (2010): Primary 53A99, 53C21
- DOI: https://doi.org/10.1090/S0002-9939-10-10382-7
- MathSciNet review: 2653957