Stable hypersurfaces with constant scalar curvature
HTML articles powered by AMS MathViewer
- by Hilário Alencar, Walcy Santos and Detang Zhou
- Proc. Amer. Math. Soc. 138 (2010), 3301-3312
- DOI: https://doi.org/10.1090/S0002-9939-10-10388-8
- Published electronically: April 22, 2010
- PDF | Request permission
Abstract:
We obtain some nonexistence results for complete noncompact stable hypersurfaces with nonnegative constant scalar curvature in Euclidean spaces. As a special case we prove that there is no complete noncompact strongly stable hypersurface $M$ in $\mathbb {R}^{4}$ with zero scalar curvature $S_2$, nonzero Gauss-Kronecker curvature and finite total curvature (i.e. $\int _M|A|^3<+\infty$).References
- H. Alencar, M. do Carmo, and A. G. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z. 213 (1993), no. 1, 117–131. MR 1217674, DOI 10.1007/BF03025712
- Hilário Alencar, Manfredo do Carmo, and Maria Fernanda Elbert, Stability of hypersurfaces with vanishing $r$-mean curvatures in Euclidean spaces, J. Reine Angew. Math. 554 (2003), 201–216. MR 1952173, DOI 10.1515/crll.2003.006
- Hilário Alencar, Manfredo do Carmo, and Harold Rosenberg, On the first eigenvalue of the linearized operator of the $r$th mean curvature of a hypersurface, Ann. Global Anal. Geom. 11 (1993), no. 4, 387–395. MR 1246197, DOI 10.1007/BF00773553
- Alencar, H., Santos, W., Zhou, D., Curvature integral estimates for complete hypersurfaces, arXiv:0903.2035.
- Xu Cheng, On constant mean curvature hypersurfaces with finite index, Arch. Math. (Basel) 86 (2006), no. 4, 365–374. MR 2223272, DOI 10.1007/s00013-005-1601-x
- Shiu Yuen Cheng and Shing Tung Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204. MR 431043, DOI 10.1007/BF01425237
- Shiing-shen Chern, On the curvatures of a piece of hypersurface in euclidean space, Abh. Math. Sem. Univ. Hamburg 29 (1965), 77–91. MR 188949, DOI 10.1007/BF02996311
- Manfredo P. do Carmo and Detang Zhou, Eigenvalue estimate on complete noncompact Riemannian manifolds and applications, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1391–1401. MR 1451597, DOI 10.1090/S0002-9947-99-02061-9
- Maria Fernanda Elbert, Constant positive 2-mean curvature hypersurfaces, Illinois J. Math. 46 (2002), no. 1, 247–267. MR 1936088
- Maria Fernanda Elbert, Barbara Nelli, and Harold Rosenberg, Stable constant mean curvature hypersurfaces, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3359–3366. MR 2322768, DOI 10.1090/S0002-9939-07-08825-9
- Haizhong Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), no. 4, 665–672. MR 1399710, DOI 10.1007/BF01444243
- R. Schoen, L. Simon, and S. T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), no. 3-4, 275–288. MR 423263, DOI 10.1007/BF02392104
- Yi-Bing Shen and Xiao-Hua Zhu, On stable complete minimal hypersurfaces in $\textbf {R}^{n+1}$, Amer. J. Math. 120 (1998), no. 1, 103–116. MR 1600268
- Robert C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465–477. MR 341351
- Harold Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211–239. MR 1216008
Bibliographic Information
- Hilário Alencar
- Affiliation: Instituto de Matemática, Universidade Federal de Alagoas, 57072-900 Maceió-AL, Brazil
- Email: hilario@mat.ufal.br
- Walcy Santos
- Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21941-909, Rio de Janeiro-RJ, Brazil
- Email: walcy@im.ufrj.br
- Detang Zhou
- Affiliation: Instituto de Matemática, Universidade Federal Fluminense, 24020-140, Niterói-RJ, Brazil
- Email: zhou@impa.br
- Received by editor(s): September 10, 2009
- Received by editor(s) in revised form: December 25, 2009
- Published electronically: April 22, 2010
- Additional Notes: The authors were partially supported by CNPq and FAPERJ, Brazil.
- Communicated by: Chuu-Lian Terng
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3301-3312
- MSC (2010): Primary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-10-10388-8
- MathSciNet review: 2653960