Non-commutative Reidemeister torsion and Morse-Novikov theory
HTML articles powered by AMS MathViewer
- by Takahiro Kitayama
- Proc. Amer. Math. Soc. 138 (2010), 3345-3360
- DOI: https://doi.org/10.1090/S0002-9939-10-10418-3
- Published electronically: April 30, 2010
- PDF | Request permission
Abstract:
Given a circle-valued Morse function of a closed oriented manifold, we prove that Reidemeister torsion over a non-commutative formal Laurent polynomial ring equals the product of a certain non-commutative Lefschetz-type zeta function and the algebraic torsion of the Novikov complex over the ring. This paper gives a generalization of the result of Hutchings and Lee on abelian coefficients to the case of skew fields. As a consequence we obtain a Morse theoretical and dynamical description of the higher-order Reidemeister torsion.References
- Tim D. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347–398. MR 2077670, DOI 10.2140/agt.2004.4.347
- Stefan Friedl, Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pacific J. Math. 230 (2007), no. 2, 271–296. MR 2309160, DOI 10.2140/pjm.2007.230.271
- Ross Geoghegan and Andrew Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), no. 4, 683–719. MR 1293306, DOI 10.1016/0040-9383(94)90004-3
- Hiroshi Goda and Andrei V. Pajitnov, Dynamics of gradient flows in the half-transversal Morse theory, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 1, 6–10. MR 2488751, DOI 10.3792/pjaa.85.6
- H. Goda and T. Sakasai, Homology cylinders in knot theory, arXiv:0807.4034.
- Shelly L. Harvey, Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44 (2005), no. 5, 895–945. MR 2153977, DOI 10.1016/j.top.2005.03.001
- Michael Hutchings, Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002), no. 2, 209–244. MR 1880912, DOI 10.1515/form.2002.010
- Michael Hutchings and Yi-Jen Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of $3$-manifolds, Topology 38 (1999), no. 4, 861–888. MR 1679802, DOI 10.1016/S0040-9383(98)00044-5
- Michael Hutchings and Yi-Jen Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999), 369–396. MR 1716272, DOI 10.2140/gt.1999.3.369
- Bo Ju Jiang and Shi Cheng Wang, Twisted topological invariants associated with representations, Topics in knot theory (Erzurum, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 399, Kluwer Acad. Publ., Dordrecht, 1993, pp. 211–227. MR 1257911
- Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 361–380. MR 1852950, DOI 10.1007/s101140100122
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981), no. 1, 31–35 (Russian). MR 630459
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- A. V. Pajitnov, Closed orbits of gradient flows and logarithms of non-abelian Witt vectors, $K$-Theory 21 (2000), no. 4, 301–324. Special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part V. MR 1828180, DOI 10.1023/A:1007812907315
- Andrei V. Pajitnov, Circle-valued Morse theory, De Gruyter Studies in Mathematics, vol. 32, Walter de Gruyter & Co., Berlin, 2006. MR 2319639, DOI 10.1515/9783110197976
- Andrei Vladimirovich Pazhitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 2, 297–338 (English, with English and French summaries). MR 1344724
- A. V. Pazhitnov, The simple homotopy type of the Novikov complex, and the Lefschetz $\zeta$-function of the gradient flow, Uspekhi Mat. Nauk 54 (1999), no. 1(325), 117–170 (Russian); English transl., Russian Math. Surveys 54 (1999), no. 1, 119–169. MR 1706835, DOI 10.1070/rm1999v054n01ABEH000118
- A. V. Pazhitnov, On closed orbits of gradient flows of circle-valued mappings, Algebra i Analiz 14 (2002), no. 3, 186–240 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 3, 499–534. MR 1921994
- Dirk Schütz, Gradient flows of closed 1-forms and their closed orbits, Forum Math. 14 (2002), no. 4, 509–537. MR 1900172, DOI 10.1515/form.2002.024
- D. Schütz, One-parameter fixed-point theory and gradient flows of closed 1-forms, $K$-Theory 25 (2002), no. 1, 59–97. MR 1899700, DOI 10.1023/A:1015079805400
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- Vladimir Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk. MR 1809561, DOI 10.1007/978-3-0348-8321-4
- Vladimir Turaev, Torsions of $3$-dimensional manifolds, Progress in Mathematics, vol. 208, Birkhäuser Verlag, Basel, 2002. MR 1958479, DOI 10.1007/978-3-0348-7999-6
- Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241–256. MR 1273784, DOI 10.1016/0040-9383(94)90013-2
Bibliographic Information
- Takahiro Kitayama
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 880899
- Email: kitayama@ms.u-tokyo.ac.jp
- Received by editor(s): September 2, 2009
- Received by editor(s) in revised form: December 28, 2009
- Published electronically: April 30, 2010
- Communicated by: Daniel Ruberman
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3345-3360
- MSC (2010): Primary ~57Q10; Secondary ~57R70
- DOI: https://doi.org/10.1090/S0002-9939-10-10418-3
- MathSciNet review: 2653964