Embeddings of $k$-connected $n$-manifolds into $\mathbb {R}^{2n-k-1}$
HTML articles powered by AMS MathViewer
- by A. Skopenkov
- Proc. Amer. Math. Soc. 138 (2010), 3377-3389
- DOI: https://doi.org/10.1090/S0002-9939-10-10425-0
- Published electronically: May 4, 2010
- PDF | Request permission
Abstract:
We obtain estimations for isotopy classes of embeddings of closed $k$-connected $n$-manifolds into $\mathbb {R}^{2n-k-1}$ for $n\ge 2k+6$ and $k\ge 0$. This is done in terms of an exact sequence involving the Whitney invariants and an explicitly constructed action of $H_{k+1}(N;\mathbb {Z}_{2})$ on the set of embeddings. The proof involves a reduction to the classification of embeddings of a punctured manifold and uses the parametric connected sum of embeddings.
Corollary. Suppose that $N$ is a closed almost parallelizable $k$-connected $n$-manifold and $n\ge 2k+6\ge 8$. Then the set of isotopy classes of embeddings $N\to \mathbb {R}^{2n-k-1}$ is in 1–1 correspondence with $H_{k+2}(N;\mathbb {Z} _{2})$ for $n-k=4s+1$.
References
- J. C. Becker and H. H. Glover, Note on the embedding of manifolds in Euclidean space, Proc. Amer. Math. Soc. 27 (1971), 405–410. MR 268903, DOI 10.1090/S0002-9939-1971-0268903-0
- Jacques Boéchat and André Haefliger, Plongements différentiables des variétés orientées de dimension $4$ dans $R^{7}$, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 156–166 (French). MR 0270384
- D. Crowley and A. Skopenkov, A classification of smooth embeddings of $4$-manifolds in $7$-space, II, submitted, arXiv:math/0808.1795.
- http://www.map.him.uni-bonn.de/index.php/ High_codimension_embeddings:_classification
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- http://www.map.him.uni-bonn.de/index.php/Parametric_connected_sum
- M. M. Postnikov, Homotopy theory of CW-complexes, Nauka, Moscow, 1985 (in Russian).
- V. V. Prasolov, Elements of homology theory, Graduate Studies in Mathematics, vol. 81, American Mathematical Society, Providence, RI, 2007. Translated from the 2005 Russian original by Olga Sipacheva. MR 2313004, DOI 10.1090/gsm/081
- R. D. Rigdon, Thesis, Ph.D. Thesis (1970).
- D. Repovsh and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6(330), 61–108 (Russian, with Russian summary); English transl., Russian Math. Surveys 54 (1999), no. 6, 1149–1196. MR 1744658, DOI 10.1070/rm1999v054n06ABEH000230
- Osamu Saeki, On punctured $3$-manifolds in $5$-sphere, Hiroshima Math. J. 29 (1999), no. 2, 255–272. MR 1704247
- A. Skopenkov, A classification of smooth embeddings of $4$-manifolds in $7$-space, submitted, arXiv:math/0512594.
- A. Skopenkov, Classification of embeddings below the metastable dimension, submitted, arXiv:math/0607422.
- A. Skopenkov, A new invariant and parametric connected sum of embeddings, Fund. Math. 197 (2007), 253–269. MR 2365891, DOI 10.4064/fm197-0-12
- Arkadiy B. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., vol. 347, Cambridge Univ. Press, Cambridge, 2008, pp. 248–342. MR 2388495
- Arkadiy Skopenkov, A classification of smooth embeddings of 3-manifolds in 6-space, Math. Z. 260 (2008), no. 3, 647–672. MR 2434474, DOI 10.1007/s00209-007-0294-1
- A. Skopenkov, Embeddings of $k$-connected $n$-manifolds into $R^{2n-k-1}$; arXiv:math/ 0812.0263.
- Jože Vrabec, Deforming a PL submanifold of Euclidean space into a hyperplane, Trans. Amer. Math. Soc. 312 (1989), no. 1, 155–178. MR 937253, DOI 10.1090/S0002-9947-1989-0937253-7
- J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51–110. MR 35997, DOI 10.2307/1969511
- Tsutomu Yasui, On the map defined by regarding embeddings as immersions, Hiroshima Math. J. 13 (1983), no. 3, 457–476. MR 725959
Bibliographic Information
- A. Skopenkov
- Affiliation: Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119992 – and – Independent University of Moscow, B. Vlasyevskiy, 11, 119002, Moscow, Russia
- Email: skopenko@mccme.ru
- Received by editor(s): December 16, 2008
- Received by editor(s) in revised form: December 31, 2009
- Published electronically: May 4, 2010
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3377-3389
- MSC (2010): Primary 57R40, 57Q37; Secondary 57R52
- DOI: https://doi.org/10.1090/S0002-9939-10-10425-0
- MathSciNet review: 2653966