LAMPLIGHTER GRAPHS DO NOT ADMIT
HARMONIC FUNCTIONS OF FINITE ENERGY

AGELOS GEORGAKOPOULOS

(Communicated by Jim Haglund)

ABSTRACT. We prove that a lamplighter graph of a locally finite graph over a
finite graph does not admit a non-constant harmonic function of finite Dirichlet
energy.

1. INTRODUCTION

The wreath product \(G \wr H \) of two groups \(G, H \) is a well-known concept. Cayley
graphs of \(G \wr H \) can be obtained in an intuitive way by starting with a Cayley
graph of \(G \) and associating with each of its vertices a lamp whose possible states
are indexed by the elements of \(H \); see below. Graphs obtained this way are called
lamplighter graphs. A well-known special case are the Diestel-Leader \([7]\) graphs
\(\text{DL}(n,n) \).

Kaimanovich and Vershik \([11, \text{Sections 6.1, 6.2}]\) proved that lamplighter graphs
of infinite grids \(\mathbb{Z}^d, d \geq 3 \) admit non-constant, bounded, harmonic functions. Their
construction had an intuitive probabilistic interpretation related to random walks
on these graphs, which triggered a lot of further research on lamplighter graphs.
For example, spectral properties of such groups are studied in \([5,10,13]\), and other
properties related to random walks are studied in \([8,9,17]\). Harmonic functions
on lamplighter graphs and the related Poisson boundary are further studied e.g.
in \([3,12,18]\). Finally, Lyons, Pemantle and Peres \([14]\) proved that the lamplighter
graph of \(\mathbb{Z} \) over \(\mathbb{Z}_2 \) has the surprising property that random walk with a drift
towards a fixed vertex can move outwards faster than simple random walk.

It is known that the existence of a non-constant harmonic function of finite
Dirichlet energy implies the existence of a non-constant bounded harmonic function
\([19, \text{Theorem 3.73}]\). Given the aforementioned impact that bounded harmonic
functions on lamplighter graphs have had, we ask whether these graphs have non-
constant harmonic functions of finite Dirichlet energy. For lamplighter graphs on a
grid it is known that no such harmonic functions can exist, since such graphs are
ameanable and thus admit no non-constant harmonic functions of finite Dirichlet
energy \([16]\). A. Karlsson (oral communication) asked whether this is also the case
for graphs of the form \(T \setminus \mathbb{Z}_2 \), where \(T \) is any regular tree. In this paper we give an
affirmative answer to this question. In fact, the actual result is much more general:
Theorem 1.1. Let G be a connected locally finite graph and let H be a connected finite graph with at least one edge. Then $G \wr H$ does not admit any non-constant harmonic function of finite Dirichlet energy.

Indeed, we do not need to assume that any of the involved graphs is a Cayley graph. Lamplighter graphs on general graphs can be defined as in the usual case when all graphs are Cayley graphs; see the next section.

It is easy to prove, and well-known, that the non-existence of non-constant harmonic functions in a graph is equivalent to the uniqueness of electrical currents. Thus, in a lamplighter graph $G \wr H$ as in Theorem 1.1 electrical currents of finite energy are unique.

Classes of graphs that do admit non-constant harmonic functions of finite Dirichlet energy are known; see [1, 2, 4].

As an intermediate step to the proof of Theorem 1.1 we prove a result (Lemma 3.1 below) that strengthens a theorem of Markvorsen, McGuinness and Thomassen [15] and might be applicable in order to prove that other classes of graphs do not admit non-constant Dirichlet-finite harmonic functions.

2. Definitions

We will be using the terminology of Diestel [6]. For a finite path P we let $|P|$ denote the number of edges in P. For a graph G and a set $U \subseteq V(G)$, we let $G[U]$ denote the subgraph of G induced by the vertices in U. If G is finite, then its diameter $\text{diam}(G)$ is the maximum distance, in the usual graph metric, of two vertices of G.

Let G, H be connected graphs, and suppose that every vertex of G has a distinct lamp associated with it, the set of possible states of each lamp being the set of vertices $V(H)$ of H. At the beginning, all lamps have the same state $s_0 \in V(H)$, and a “lamplighter” is standing at some vertex of G. In each unit of time the lamplighter is allowed to choose one of two possible moves: either walk to a vertex of G adjacent to the vertex $x \in V(G)$ he is currently at or switch the current state $s \in V(H)$ of x into one of the states $s' \in V(H)$ adjacent with s. The lamplighter graph $G \wr H$ is, then, a graph whose vertices correspond to the possible configurations of this game and whose edges correspond to the possible moves of the lamplighter. More formally, the vertex set of $G \wr H$ is the set of pairs (C,x) where $C : V(G) \to V(H)$ is an assignment of states such that $C(v) \neq s_0$ holds for only finitely many vertices $v \in V(G)$, and x is a vertex of G (the current position of the lamplighter). Two vertices (C,x) and (C',x') of $G \wr H$ are joined by an edge if (precisely) one of the following conditions holds:

- $C = C'$ and $xx' \in E(G)$, or
- $x = x'$, all vertices except x are mapped to the same state by C and C', and $C(x)C'(x) \in E(H)$.

This definition of $G \wr H$ coincides with that of Erschler [9].

The blow-up of a vertex $v \in V(G)$ in $L = G \wr H$ is the set of vertices of L of the form (C,v). Similarly, the blow-up of a subgraph T of G is the subgraph of L spanned by the blow-ups of the vertices of T. Given a vertex $x \in V(L)$ we let $[x]$ denote the vertex of G, the blow-up of which contains x.

An edge of L is a switching edge if it corresponds to a move of the lamplighter that switches a lamp, more formally, if it is of the form $(C,v)(C',v)$. For a switching
We start with a lemma that might be applicable in order to prove that other classes of graphs do not admit non-constant Dirichlet-finite harmonic functions. This strengthens a result of [15, Theorem 7.1].

Lemma 3.1. Let G be a connected locally finite graph such that for every two disjoint rays S,Q in G there is a constant c and a sequence $(P_i)_{i \in \mathbb{N}}$ of pairwise edge-disjoint S–Q paths such that $|P_i| \leq ci$. Then G does not admit a non-constant harmonic function of finite energy.

Proof. Let G be a locally finite graph that admits a non-constant harmonic function ϕ of finite energy; it suffices to find two rays S,Q in G that do not satisfy the condition in the assertion.

Since ϕ is non-constant, we can find an edge x_0x_1 satisfying $\phi(x_1) > \phi(x_0)$. By the definition of a harmonic function, it is easy to see that x_0x_1 must lie in a double ray $D = \ldots x_{-1}x_0x_1 \ldots$ such that $\phi(x_i) \geq \phi(x_{i-1})$ for every $i \in \mathbb{Z}$; indeed, every vertex $x \in V(G)$ must have a neighbour y such that $\phi(y) \geq \phi(x)$.

Define the subrays $S = x_0x_1x_2\ldots$ and $Q = x_0x_1x_2\ldots$ of D. Now suppose there is a sequence $(P_i)_{i \in \mathbb{N}}$ of pairwise edge-disjoint S–Q paths such that $|P_i| \leq ci$ for some constant c.

Note that by the choice of D there is a bound $u > 0$ such that $u_i := |\phi(s_i) - \phi(q_i)| \geq u$ for every i, where $s_i \in V(S)$ and $q_i \in V(Q)$ are the endvertices of P_i.

For every edge $e = xy$ let $f(e) := |\phi(y) - \phi(x)|$. Let X_i be the set of edges e in P_i such that $f(e) > 0.99u_i$, and let Y_i be the set of all other edges in P_i. As $|P_i| \leq ci$ by assumption, the edges in Y_i contribute less than $0.9u_i$ to u_i; thus $\sum_{e \in X_i} f(e) > 0.1u_i$ must hold. But since $f(e) > 0.99u_i$ for every $e \in X_j$, we have $\sum_{e \in X_j} w_\phi(e) > 0.1 \times 0.99u_i^2$. As the sets X_j are pairwise edge-disjoint, and as the series $\sum_1 1/i$ is not convergent, this contradicts the fact that $\sum_{e \in E(G)} w_\phi(e)$ is finite.

We now apply Lemma 3.1 to prove our main result.

Proof of Theorem 1.1. We will show that $L := G \setminus H$ satisfies the condition of Lemma 3.1 from which then the assertion follows. So let S,Q be any two disjoint rays of L.

Since L is connected we can find a double ray D in L that contains a tail S' of S and a tail Q' of Q. Let s_0 (respectively, q_0) be the first vertex of S' (resp. Q'). Let V_0 be the set of vertices of G, the blow-up of which meets the path s_0Dq_0. Note that V_0 induces a connected subgraph of G, because the lamplighter only moves along the edges of G. Thus we can choose a spanning tree T_0 of $G[V_0]$.

For $i = 1, 2, \ldots$ we construct an S'–Q' path P_i as follows. Let s_i be the first vertex of S' not in the blow-up of V_{i-1}, and let q_i be the first vertex of Q' not in
the blow-up of V_{i-1}. Let $V_i := V_{i-1} \cup \{s_i, q_i\}$, and extend T_{i-1} into a spanning tree T_i of $G[V_i]$ by adding two edges incident with s_i and q_i, respectively; such edges do exist: their blow-up contains the edges of S', Q' leading into s_i, q_i, respectively.

We now construct an s_i-q_i path P_i. Pick a switching edge $e = s_is'_i$ incident with s_i. Then let X_i be the unique path in L from s'_i to a vertex q_i^+ with $[q_i^+] = [q_i]$ such that X_i is contained in the blow-up of T_i. Pick a switching edge $f = q_i^+q_i^-$ incident with q_i^+. Then follow the unique path Y_i in L from q_i^- to a vertex s_i^+ with $[s_i^+] = [s_i]$ such that Y_i is contained in the blow-up of T_i. Let $e' = s_i^+s_i^-$ be the switching edge incident with s_i^+ such that $[e'] = [e]$. Finally, let Z_i be a path from s_i^- to the unique vertex q_i' with $[q_i q_i'] = [f]$, such that the interior of Z_i is contained in the blow-up of V_{i-1} and Z_i has minimum length under all paths with these properties. Such a path exists because every lamp at a vertex in $G - V_{i-1}$ has the same state in s_i^- and q_i'; indeed, the lamps in $G - V_i$ were never switched in the above construction, the lamp at $[s_i]$ was switched twice on the way from s_i to s_i^- using the same switching edge $[e]$, which means that its state in both endpoints of Z_i coincides with that in s_i and q_i, and finally the lamp at $[q_i']$ has the same state in both endpoints of Z_i, namely the state $[f]$ leads to. Now set $P_i := s_is'_iX_is'_iq_i^+Y_is_i+s_iZ_iq_iq_i'$.

It is not hard to check that the paths P_i are pairwise disjoint. Indeed, let $i < j \in \mathbb{N}$. Then, by the choice of the vertices s_j, q_j and the construction of P_j, it follows that for every inner vertex x of P_j, the configuration of x differs from the configuration of any vertex in P_i in at least one of the two lamps at $[s_j]$ and $[q_j]$.

It remains to show that there is a constant c such that $|P_i| \leq ci$ for every i. To prove this, note that $|P_i| = |X_i| + |Y_i| + |Z_i| + 4$; we will show that the latter three subpaths grow at most linearly with i, which then implies that this is also true for P_i.

Firstly, note that $diam(T_i) - diam(T_{i-1}) \leq 2$ since $V(T_i) := V(T_{i-1}) \cup \{s_i, q_i\}$. By the choice of X_i, we have $|X_i| \leq diam(T_i)$, from which it follows that there is a constant c_1 such that $|X_i| \leq c_1i$. By the same argument, we have $|Y_i| \leq c_1i$.

It remains to bound the length of Z_i. For this, note that if T is a finite tree and $v, w \in V(T)$, then there is a v-w walk W in T containing all edges of T and satisfying $|W| \leq \frac{3}{2}E(T)$; indeed, starting at v, one can first walk around the “perimeter” of T traversing every edge precisely once in each direction (2 $E(T)$ edges), and then move “straight” from v to w (at most $E(T)$ edges). Thus, in order to choose Z_i, we could put a lamplighter at the vertex and configuration indicated by s_i^- and let him move in $T_i \subset G$ along such a walk W from $[s_i^-]$ to $[q_i']$, and every time he visits a new vertex x let him change the state of x to the state indicated by q_i'. This bounds the length of Z_i from above by $3|E(T_i)|diam(H)$, and since $|E(T_i)| - |E(T_{i-1})| = 2$ and H is fixed, we can find a constant c_2 such that $|Z_i| \leq c_2i$ for every i. This completes the proof that $|P_i|$ grows at most linearly with i.

Thus we can now apply Lemma 3.1 to prove that $G \wr H$ does not admit a non-constant harmonic function of finite energy.

\begin{problem}
Does the assertion of Theorem 1.1 still hold if H is an infinite locally finite graph?
\end{problem}

Lemma 3.1 might be applicable in order to prove that other classes of graphs also do not admit non-constant Dirichlet-finite harmonic functions. For example, it yields an easy proof of the (well-known) fact that infinite grids have this property.
Acknowledgements

I am grateful to Jörg Lehnert for pointing out some errors in an earlier version of this paper and to Wolfgang Woess for helping with the problem and helpful discussions.

References

Technische Universität Graz, Steyrergasse 30, 8010, Graz, Austria