## Symmetry of bound and antibound states in the semiclassical limit for a general class of potentials

HTML articles powered by AMS MathViewer

- by Semyon Dyatlov and Subhroshekhar Ghosh PDF
- Proc. Amer. Math. Soc.
**138**(2010), 3203-3210 Request permission

## Abstract:

We consider the Schrödinger operator $-h^2\partial _x^2+V(x)$ on a half-line, where $V$ is a compactly supported potential which is positive near the endpoint of its support. We prove that the eigenvalues and the purely imaginary resonances are symmetric up to an error $Ce^{-\delta /h}$.## References

- A. A. Abramov, A. Aslanyan, and E. B. Davies,
*Bounds on complex eigenvalues and resonances*, J. Phys. A**34**(2001), no. 1, 57–72. MR**1819914**, DOI 10.1088/0305-4470/34/1/304 - D. Bindel,
*MatScat: MATLAB Codes for 1D Potential Scattering,*http://cims.nyu.edu/ ~dbindel/matscat. - David Bindel and Maciej Zworski,
*Symmetry of bound and antibound states in the semiclassical limit*, Lett. Math. Phys.**81**(2007), no. 2, 107–117. MR**2336226**, DOI 10.1007/s11005-007-0178-7 - P. Briet, J.-M. Combes, and P. Duclos,
*On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances*, Comm. Partial Differential Equations**12**(1987), no. 2, 201–222. MR**876987**, DOI 10.1080/03605308708820488 - Richard Froese,
*Asymptotic distribution of resonances in one dimension*, J. Differential Equations**137**(1997), no. 2, 251–272. MR**1456597**, DOI 10.1006/jdeq.1996.3248 - Michael Hitrik,
*Bounds on scattering poles in one dimension*, Comm. Math. Phys.**208**(1999), no. 2, 381–411. MR**1729092**, DOI 10.1007/s002200050763 - Evgeny Korotyaev,
*Inverse resonance scattering on the real line*, Inverse Problems**21**(2005), no. 1, 325–341. MR**2146179**, DOI 10.1088/0266-5611/21/1/020 - L. D. Landau and E. M. Lifshitz,
*Quantum mechanics: non-relativistic theory. Course of Theoretical Physics, Vol. 3*, Addison-Wesley Series in Advanced Physics, Pergamon Press, Ltd., London-Paris; for U.S.A. and Canada: Addison-Wesley Publishing Company, Inc., Reading, Mass., 1958. Translated from the Russian by J. B. Sykes and J. S. Bell. MR**0093319** - L. Nedelec,
*Asymptotics of resonances for a Schrödinger operator with matrix values,*math.SP/0509391. - T. Regge,
*Analytic properties of the scattering matrix*, Nuovo Cimento (10)**8**(1958), 671–679. MR**95702** - Barry Simon,
*Resonances in one dimension and Fredholm determinants*, J. Funct. Anal.**178**(2000), no. 2, 396–420. MR**1802901**, DOI 10.1006/jfan.2000.3669 - S.-H. Tang and M. Zworski,
*Potential Scattering on the Real Line,*lecture notes, http: //math.berkeley.edu/~zworski/tz1.pdf. - Maciej Zworski,
*Distribution of poles for scattering on the real line*, J. Funct. Anal.**73**(1987), no. 2, 277–296. MR**899652**, DOI 10.1016/0022-1236(87)90069-3

## Additional Information

**Semyon Dyatlov**- Affiliation: Department of Mathematics, Evans Hall, University of California, Berkeley, California 94720
- MR Author ID: 830509
- ORCID: 0000-0002-6594-7604
- Email: dyatlov@math.berkeley.edu
**Subhroshekhar Ghosh**- Affiliation: Department of Mathematics, Evans Hall, University of California, Berkeley, California 94720
- Email: subhro@math.berkeley.edu
- Received by editor(s): December 2, 2009
- Published electronically: May 14, 2010
- Communicated by: Hart F. Smith
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**138**(2010), 3203-3210 - MSC (2010): Primary 34L25; Secondary 65L15, 81U20
- DOI: https://doi.org/10.1090/S0002-9939-2010-10519-1
- MathSciNet review: 2653945