Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Regularity of geodesic rays and Monge-Ampère equations
HTML articles powered by AMS MathViewer

by D. H. Phong and Jacob Sturm PDF
Proc. Amer. Math. Soc. 138 (2010), 3637-3650 Request permission

Abstract:

It is shown that the geodesic rays constructed as limits of Bergman geodesics from a test configuration are always of class $C^{1,\alpha }$, $0<\alpha <1$. An essential step is to establish that the rays can be extended as solutions of a Dirichlet problem for a Monge-Ampère equation on a Kähler manifold which is compact.
References
  • Claudio Arezzo and Gang Tian, Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 617–630. MR 2040638
  • Berman, R. and J. P. Demailly, “Regularity of plurisubharmonic upper envelopes in big cohomology classes”, arXiv:0905.1246
  • Eric Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR 445006, DOI 10.1007/BF01418826
  • Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
  • Bo Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom. 81 (2009), no. 3, 457–482. MR 2487599, DOI 10.4310/jdg/1236604342
  • Berndtsson, B., “Probability measures associated with geodesics in the space of Kähler metrics”, arXiv: 0907.1806
  • Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697–1701. MR 2021054, DOI 10.1512/iumj.2003.52.2346
  • Błocki, Z., “On geodesics in the space of Kähler metrics”, 2009 preprint.
  • Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
  • David Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997) Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23. MR 1699887
  • Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
  • Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503. MR 2471594, DOI 10.1007/s00222-008-0153-7
  • Chen, X.X. and S. Sun, “Space of Kähler metrics V-Kähler quantization”, arXiv: 0902.4149
  • Xiuxiong Chen and Yudong Tang, Test configuration and geodesic rays, Astérisque 321 (2008), 139–167 (English, with English and French summaries). Géométrie différentielle, physique mathématique, mathématiques et société. I. MR 2521647
  • Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274. MR 2113021, DOI 10.4007/annals.2004.159.1247
  • Dinew, S., “Uniqueness and stability in ${\mathcal E}(X,\omega )$”, arXiv:0804.3407
  • S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
  • S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
  • S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), no. 3, 453–472. MR 2192937, DOI 10.4310/jdg/1143642909
  • Bo Guan, The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998), no. 4, 687–703. MR 1664889, DOI 10.4310/CAG.1998.v6.n4.a3
  • Zhiqin Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), no. 2, 235–273. MR 1749048, DOI 10.1353/ajm.2000.0013
  • Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252. MR 909015
  • D. H. Phong and Jacob Sturm, Stability, energy functionals, and Kähler-Einstein metrics, Comm. Anal. Geom. 11 (2003), no. 3, 565–597. MR 2015757, DOI 10.4310/CAG.2003.v11.n3.a6
  • D. H. Phong and Jacob Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006), no. 1, 125–149. MR 2242635, DOI 10.1007/s00222-006-0512-1
  • Phong, D.H. and J. Sturm, “Test configurations and geodesics in the space of Kähler potentials”, J. Symp. Geom. 5 (2007) 221–247.
  • Phong, D.H. and J. Sturm, “On the regularity of geodesics associated to test configurations”, arXiv:0707.3956.
  • Phong, D.H. and J. Sturm, “The Dirichlet problem for degenerate complex Monge-Ampère equations”, arXiv:0904.1898
  • Rubinstein, Y. and S. Zelditch, “Bergman approximations of harmonic maps into the space of Kähler metrics on toric varieties”, arXiv:0803.1249
  • Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550. MR 1165352, DOI 10.2307/2374768
  • Song, J. and S. Zelditch, “Bergman metrics and geodesics in the space of Kähler metrics on toric varieties”, arXiv:0707.3082
  • Song, J. and S. Zelditch, “Test configurations, large deviations and geodesic rays on toric varieties”, arXiv:0712.3599
  • Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
  • Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
  • Shing-Tung Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28. MR 1216573
  • Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317–331. MR 1616718, DOI 10.1155/S107379289800021X
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31C10, 53B35
  • Retrieve articles in all journals with MSC (2010): 31C10, 53B35
Additional Information
  • D. H. Phong
  • Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
  • MR Author ID: 139200
  • ORCID: 0000-0003-4997-4300
  • Email: phong@math.columbia.edu
  • Jacob Sturm
  • Affiliation: Department of Mathematics, Rutgers University, Newark, New Jersey 07102
  • Email: sturm@rutgers.edu
  • Received by editor(s): September 23, 2009
  • Received by editor(s) in revised form: January 8, 2010
  • Published electronically: May 5, 2010
  • Additional Notes: This work was partially supported by NSF under grants DMS-07-57372 and DMS-09-05873
  • Communicated by: Richard A. Wentworth
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 138 (2010), 3637-3650
  • MSC (2010): Primary 31C10, 53B35
  • DOI: https://doi.org/10.1090/S0002-9939-10-10371-2
  • MathSciNet review: 2661562