Entropy for $C^*$-algebras with tracial rank zero
HTML articles powered by AMS MathViewer
- by Rui Okayasu
- Proc. Amer. Math. Soc. 138 (2010), 3609-3621
- DOI: https://doi.org/10.1090/S0002-9939-10-10475-4
- Published electronically: May 7, 2010
- PDF | Request permission
Abstract:
Voiculescu’s topological approximation entropy is extended to automorphisms on unital simple $C^*$-algebras with tracial rank zero. Several expected properties are shown. We also consider the value of our entropy for a cat map on the non-commutative torus.References
- Nathanial P. Brown, Topological entropy in exact $C^\ast$-algebras, Math. Ann. 314 (1999), no. 2, 347–367. MR 1697449, DOI 10.1007/s002080050298
- Bruce Blackadar, Comparison theory for simple $C^*$-algebras, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp. 21–54. MR 996438
- A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of $C^\ast$ algebras and von Neumann algebras, Comm. Math. Phys. 112 (1987), no. 4, 691–719. MR 910587, DOI 10.1007/BF01225381
- A. Connes and E. Størmer, Entropy for automorphisms of $II_{1}$ von Neumann algebras, Acta Math. 134 (1975), no. 3-4, 289–306. MR 454657, DOI 10.1007/BF02392105
- George A. Elliott and David E. Evans, The structure of the irrational rotation $C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. MR 1247990, DOI 10.2307/2946553
- George A. Elliott and Qing Lin, Cut-down method in the inductive limit decomposition of non-commutative tori, J. London Math. Soc. (2) 54 (1996), no. 1, 121–134. MR 1395072, DOI 10.1112/jlms/54.1.121
- V. Ya. Golodets and S. V. Neshveyev, Entropy of automorphisms of $\textrm {II}_1$-factors arising from the dynamical systems theory, J. Funct. Anal. 181 (2001), no. 1, 14–28. MR 1818110, DOI 10.1006/jfan.2000.3705
- Shanwen Hu, Huaxin Lin, and Yifeng Xue, The tracial topological rank of $C^*$-algebras. II, Indiana Univ. Math. J. 53 (2004), no. 6, 1578–1603. MR 2106337, DOI 10.1512/iumj.2004.53.2458
- Huaxin Lin, The tracial topological rank of $C^*$-algebras, Proc. London Math. Soc. (3) 83 (2001), no. 1, 199–234. MR 1829565, DOI 10.1112/plms/83.1.199
- Huaxin Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884366, DOI 10.1142/9789812799883
- Lin, H.; Phillips, N. C. Crossed products by minimal homeomorphisms. Preprint, 2004, arXiv:math.OA/0408291.
- Sergey Neshveyev and Erling Størmer, Dynamical entropy in operator algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 50, Springer-Verlag, Berlin, 2006. MR 2251116, DOI 10.1007/978-3-540-34197-0
- Marc A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), no. 2, 257–338. MR 941652, DOI 10.4153/CJM-1988-012-9
- Dan Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170 (1995), no. 2, 249–281. MR 1334396, DOI 10.1007/BF02108329
Bibliographic Information
- Rui Okayasu
- Affiliation: Department of Mathematics Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
- Email: rui@cc.osaka-kyoiku.ac.jp
- Received by editor(s): March 4, 2009
- Received by editor(s) in revised form: December 1, 2009, and January 8, 2010
- Published electronically: May 7, 2010
- Additional Notes: The author was supported in part by the Japan Society for the Promotion of Science
- Communicated by: Marius Junge
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3609-3621
- MSC (2010): Primary 46L55; Secondary 28D20, 46L40
- DOI: https://doi.org/10.1090/S0002-9939-10-10475-4
- MathSciNet review: 2661560