Poincarรฉ series and the divisors of modular forms
HTML articles powered by AMS MathViewer
- by D. Choi
- Proc. Amer. Math. Soc. 138 (2010), 3393-3403
- DOI: https://doi.org/10.1090/S0002-9939-2010-10133-8
- Published electronically: June 3, 2010
- PDF | Request permission
Abstract:
Recently, Bruinier, Kohnen and Ono obtained an explicit description of the action of the theta-operator on meromorphic modular forms $f$ on $SL_2(\mathbb {Z})$ in terms of the values of modular functions at points in the divisor of $f$. Using this result, they studied the exponents in the infinite product expansion of a modular form and recurrence relations for Fourier coefficients of a modular form. In this paper, we extend these results to meromorphic modular forms on $\Gamma _0(N)$ for an arbitrary positive integer $N>1$.References
- Irene A. Stegun (ed.), Pocketbook of mathematical functions, Verlag Harri Deutsch, Thun, 1984. Abridged edition of Handbook of mathematical functions edited by Milton Abramowitz and Irene A. Stegun; Material selected by Michael Danos and Johann Rafelski. MR 768931
- Scott Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett. 10 (2003), no.ย 5-6, 787โ798. MR 2024734, DOI 10.4310/MRL.2003.v10.n6.a6
- Richard E. Borcherds, Automorphic forms on $\textrm {O}_{s+2,2}(\textbf {R})$ and infinite products, Invent. Math. 120 (1995), no.ย 1, 161โ213. MR 1323986, DOI 10.1007/BF01241126
- Jan H. Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920, DOI 10.1007/b83278
- Jan Hendrik Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no.ย 1, 45โ90. MR 2097357, DOI 10.1215/S0012-7094-04-12513-8
- Jan H. Bruinier, Winfried Kohnen, and Ken Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), no.ย 3, 552โ566. MR 2041768, DOI 10.1112/S0010437X03000721
- Jan Hendrik Bruinier and Tonghai Yang, Twisted Borcherds products on Hilbert modular surfaces and their CM values, Amer. J. Math. 129 (2007), no.ย 3, 807โ841. MR 2325105, DOI 10.1353/ajm.2007.0019
- D. Choi, On values of a modular form on $\Gamma _0(N)$, Acta Arith. 121 (2006), no.ย 4, 299โ311. MR 2224397, DOI 10.4064/aa121-4-1
- Wolfgang Eholzer and Nils-Peter Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no.ย 1, 82โ89. MR 1418608, DOI 10.1016/0370-2693(96)01154-9
- Noam D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over $\textbf {Q}$, Invent. Math. 89 (1987), no.ย 3, 561โ567. MR 903384, DOI 10.1007/BF01388985
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Douglas Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973), 133โ145. MR 337788, DOI 10.1017/S0027763000015932
Bibliographic Information
- D. Choi
- Affiliation: School of Liberal Arts and Sciences, Korea Aerospace University, 200-1, Hwajeon-dong, Goyang, Gyeonggi 412-791, Korea
- MR Author ID: 784974
- Email: choija@kau.ac.kr
- Received by editor(s): April 2, 2009
- Received by editor(s) in revised form: July 27, 2009
- Published electronically: June 3, 2010
- Communicated by: Ken Ono
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3393-3403
- MSC (2010): Primary 11F12; Secondary 11F30
- DOI: https://doi.org/10.1090/S0002-9939-2010-10133-8
- MathSciNet review: 2661540