On spectral gap rigidity and Connes invariant $\chi (M)$
Author:
Sorin Popa
Journal:
Proc. Amer. Math. Soc. 138 (2010), 3531-3539
MSC (2000):
Primary 46L10, 46L37, 46L40
DOI:
https://doi.org/10.1090/S0002-9939-2010-10277-0
Published electronically:
June 15, 2010
MathSciNet review:
2661553
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We calculate Connes’ invariant $\chi (M)$ for certain II$_{1}$ factors $M$ that can be obtained as inductive limits of subfactors with spectral gap. Then we use this to answer a question he posed in 1975 on the structure of McDuff factors $M$ with $\chi (M)=1$.
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- Alain Connes, Sur la classification des facteurs de type ${\rm II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13–A15 (French, with English summary). MR 377534
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI https://doi.org/10.2307/1971057
- David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1642584
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI https://doi.org/10.1007/BF01389127
- Yasuyuki Kawahigashi, Centrally trivial automorphisms and an analogue of Connes’s $\chi (M)$ for subfactors, Duke Math. J. 71 (1993), no. 1, 93–118. MR 1230287, DOI https://doi.org/10.1215/S0012-7094-93-07105-0
- Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. MR 281018, DOI https://doi.org/10.1112/plms/s3-21.3.443
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Narutaka Ozawa and Sorin Popa, Some prime factorization results for type ${\rm II}_1$ factors, Invent. Math. 156 (2004), no. 2, 223–234. MR 2052608, DOI https://doi.org/10.1007/s00222-003-0338-z
- N. Ozawa, S. Popa: On a class of $\text \textrm {II}_{1}$ factors with at most one Cartan subalgebra, math.OA/0706.3623, to appear in Annals of Mathematics.
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811
- Sorin Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375–405. MR 1198815, DOI https://doi.org/10.1007/BF01231293
- S. Popa: Classification of actions of discrete amenable groups on amenable subfactors of type II, IHES preprint, 1992, to appear in Intern. J. Math, 2009 (see http://www.math.ucla.edu/popa/preprints.html).
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI https://doi.org/10.1007/BF01241137
- Sorin Popa, Universal construction of subfactors, J. Reine Angew. Math. 543 (2002), 39–81. MR 1887878, DOI https://doi.org/10.1515/crll.2002.017
- Sorin Popa, On a class of type ${\rm II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI https://doi.org/10.4007/annals.2006.163.809
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI https://doi.org/10.1007/s00222-006-0501-4
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI https://doi.org/10.1090/S0894-0347-07-00578-4
- S. Popa: On the classification of inductive limits of II$_{1}$ factors with spectral gap, math.OA/0910.2241.
- Sorin Popa and Dimitri Shlyakhtenko, Universal properties of $L({\bf F}_\infty )$ in subfactor theory, Acta Math. 191 (2003), no. 2, 225–257. MR 2051399, DOI https://doi.org/10.1007/BF02392965
- Florin Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), no. 2, 347–389. MR 1258909, DOI https://doi.org/10.1007/BF01231764
- Florin Rădulescu, An invariant for subfactors in the von Neumann algebra of a free group, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 213–239. MR 1426841
- Sorin Popa, Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in Mathematics, vol. 86, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. MR 1339767
- Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445–477. MR 2334200, DOI https://doi.org/10.4171/022-1/18
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L10, 46L37, 46L40
Retrieve articles in all journals with MSC (2000): 46L10, 46L37, 46L40
Additional Information
Sorin Popa
Affiliation:
Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
MR Author ID:
141080
Email:
popa@math.ucla.edu
Received by editor(s):
September 30, 2009
Received by editor(s) in revised form:
October 25, 2009, and October 31, 2009
Published electronically:
June 15, 2010
Additional Notes:
This work was supported in part by NSF Grant 0601082
Communicated by:
Marius Junge
Article copyright:
© Copyright 2010
American Mathematical Society