Arithmetic rigidity
HTML articles powered by AMS MathViewer
- by Wayne Raskind and Matei Stroila
- Proc. Amer. Math. Soc. 138 (2010), 3405-3413
- DOI: https://doi.org/10.1090/S0002-9939-2010-10373-8
- Published electronically: June 3, 2010
- PDF | Request permission
Abstract:
We prove an arithmetic analogue of rigidity results of Suslin and Beilinson, and then give some applications to countability of certain motivic cohomology groups of varieties over the complex numbers, assuming a finite generation of these groups for varieties over finitely generated fields.References
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496, DOI 10.24033/asens.1269
- Jean-Louis Colliot-Thélène and Wayne Raskind, ${\scr K}_2$-cohomology and the second Chow group, Math. Ann. 270 (1985), no. 2, 165–199. MR 771978, DOI 10.1007/BF01456181
- Jean-Louis Colliot-Thélène and Wayne Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. Math. 105 (1991), no. 2, 221–245 (French, with English summary). MR 1115542, DOI 10.1007/BF01232266
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- Henri A. Gillet and Robert W. Thomason, The $K$-theory of strict Hensel local rings and a theorem of Suslin, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 241–254. MR 772059, DOI 10.1016/0022-4049(84)90037-9
- Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207–245. MR 929536, DOI 10.1007/BF01456052
- Marc Levine, The indecomposable $K_3$ of fields, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 255–344. MR 1005161, DOI 10.24033/asens.1585
- A. S. Merkur′ev and A. A. Suslin, The group $K_3$ for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 541–565. MR 1072694
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Stefan J. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), no. 3, 513–543. MR 1487225
- Wayne Raskind, Higher $l$-adic Abel-Jacobi mappings and filtrations on Chow groups, Duke Math. J. 78 (1995), no. 1, 33–57. MR 1328751, DOI 10.1215/S0012-7094-95-07803-X
- A. Suslin, On the $K$-theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 714090, DOI 10.1007/BF01394024
- A. A. Suslin, Homology of $\textrm {GL}_{n}$, characteristic classes and Milnor $K$-theory, Trudy Mat. Inst. Steklov. 165 (1984), 188–204 (Russian). Algebraic geometry and its applications. MR 752941
- A. A. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), no. 1, 5–29. MR 899915, DOI 10.1007/BF00533985
- Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238. MR 1764202
Bibliographic Information
- Wayne Raskind
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, Arizona 85287-1804
- MR Author ID: 213137
- Email: raskind@asu.edu
- Matei Stroila
- Affiliation: Emerging Technologies, NAVTEQ, 425 West Randolph Street, Chicago, Illinois 60606
- Email: matei.stroila@navteq.com
- Received by editor(s): November 19, 2008
- Received by editor(s) in revised form: August 23, 2009
- Published electronically: June 3, 2010
- Additional Notes: The first author was partially supported by NSA grant H98230-07-1-0041
- Communicated by: Ted Chinburg
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3405-3413
- MSC (2010): Primary 19F27, 19E15
- DOI: https://doi.org/10.1090/S0002-9939-2010-10373-8
- MathSciNet review: 2661541