Poincaré duality and Steinberg’s Theorem on rings of coinvariants
HTML articles powered by AMS MathViewer
- by W. G. Dwyer and C. W. Wilkerson
- Proc. Amer. Math. Soc. 138 (2010), 3769-3775
- DOI: https://doi.org/10.1090/S0002-9939-2010-10429-X
- Published electronically: May 26, 2010
Abstract:
Let $k$ be a field, $V$ an $r$-dimensional $k$-vector space, and $W$ a finite subgroup of $\mathrm {Aut}_k(V )$. Let $S = S[V^{\#}]$ be the symmetric algebra on $V^\#$, the $k$-dual of $V$, and $R = S^W$ the ring of invariants under the natural action of $W$ on $S$. Define $P_*$ to be the quotient algebra $S\otimes _R k$.
Steinberg has shown that $R$ is polynomial if $k$ is the field of complex numbers and the quotient algebra $P_* = S\otimes _R k$ satisfies Poincaré duality.
In this paper we use elementary methods to prove Steinberg’s result for fields of characteristic $0$ or of characteristic prime to the order of $W$. This gives a new proof even in the characteristic zero case.
Theorem 0.1. If the characteristic of $k$ is zero or prime to the order of $W$ and $P_*$ satisfies Poincaré duality, then $R$ is isomorphic to a polynomial algebra on $r$ generators.
References
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- H. E. A. Campbell and I. P. Hughes, Vector invariants of $U_2(\mathbf F_p)$: a proof of a conjecture of Richman, Adv. Math. 126 (1997), no. 1, 1–20. MR 1440251, DOI 10.1006/aima.1996.1590
- Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann; With 1 CD-ROM (Windows, Macintosh, and UNIX). MR 1930604, DOI 10.1007/978-3-662-04963-1
- Richard Kane, Poincaré duality and the ring of coinvariants, Canad. Math. Bull. 37 (1994), no. 1, 82–88. MR 1261561, DOI 10.4153/CMB-1994-012-3
- Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5, Springer-Verlag, New York, 2001. MR 1838580, DOI 10.1007/978-1-4757-3542-0
- Tzu-Chun Lin, Poincaré duality algebras and rings of coinvariants, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1599–1604. MR 2204269, DOI 10.1090/S0002-9939-05-08170-0
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Jean-Pierre Serre, Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’Algèbre (Paris, 1967) Secrétariat mathématique, Paris, 1968, pp. Exp. 8, 11 (French). MR 0234953
- Larry Smith, On a theorem of R. Steinberg on rings of coinvariants, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1043–1048. MR 1948093, DOI 10.1090/S0002-9939-02-06629-7
- Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 167535, DOI 10.1090/S0002-9947-1964-0167535-3
- Müfit Sezer and R. James Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl. Algebra 205 (2006), no. 1, 210–225. MR 2193198, DOI 10.1016/j.jpaa.2005.07.003
- Hirosi Toda, Cohomology $\textrm {mod}$ $3$ of the classifying space $BF_{4}$ of the exceptional group $\textbf {F}_{4}$, J. Math. Kyoto Univ. 13 (1973), 97–115. MR 321086, DOI 10.1215/kjm/1250523438
Bibliographic Information
- W. G. Dwyer
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- MR Author ID: 61120
- Email: dwyer.1@nd.edu
- C. W. Wilkerson
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 – and – Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: cwilkers@purdue.edu, cwilkers@math.tamu.edu
- Received by editor(s): May 19, 2006
- Received by editor(s) in revised form: January 31, 2010
- Published electronically: May 26, 2010
- Communicated by: Bernd Ulrich
- © Copyright 2010 W. G. Dwyer and C. W. Wilkerson
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3769-3775
- MSC (2010): Primary 57T10, 13A50; Secondary 20F55
- DOI: https://doi.org/10.1090/S0002-9939-2010-10429-X
- MathSciNet review: 2661576