Lindelöf’s theorem for hyperbolic catenoids
HTML articles powered by AMS MathViewer
- by Pierre Bérard and Ricardo Sa Earp
- Proc. Amer. Math. Soc. 138 (2010), 3657-3669
- DOI: https://doi.org/10.1090/S0002-9939-2010-10492-6
- Published electronically: June 15, 2010
- PDF | Request permission
Abstract:
In this paper, we study the maximal stable domains on minimal and constant mean curvature $1$ catenoids in hyperbolic space. In particular we investigate whether half-vertical catenoids are maximal stable domains (Lindelöf’s property). Our motivation comes from Lindelöf’s 1870 paper on catenoids in Euclidean space.References
- J. L. M. Barbosa, J. de M. Gomes, and A. M. Silveira, Foliation of $3$-dimensional space forms by surfaces with constant mean curvature, Bol. Soc. Brasil. Mat. 18 (1987), no. 2, 1–12. MR 1018441, DOI 10.1007/BF02590019
- Pierre Bérard and Ricardo Sa Earp, Minimal hypersurfaces in $\mathbb {H}^n \times \mathbb {R}$, total curvature and index, arXiv:0808.3838 (2008).
- Pierre Bérard and Ricardo Sa Earp, Lindelöf’s theorem for catenoids, revisited, arXiv:0907.4294 (2009).
- M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685–709. MR 694383, DOI 10.1090/S0002-9947-1983-0694383-X
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- H. Blaine Lawson, Jr., Lectures on minimal submanifolds. Vol. I, second ed., Mathematics Lecture Series, vol. 9, Publish or Perish Inc., Wilmington, Del., 1980.
- Levi Lopes de Lima and Wayne Rossman, On the index of constant mean curvature $1$ surfaces in hyperbolic space, Indiana Univ. Math. J. 47 (1998), no. 2, 685–723. MR 1647877, DOI 10.1512/iumj.1998.47.1449
- Lorenz Lindelöf, Sur les limites entre lesquelles le caténoïde est une surface minimale, Math. Annalen 2 (1870), 160–166.
- Hiroshi Mori, Minimal surfaces of revolution in $H^{3}$ and their global stability, Indiana Univ. Math. J. 30 (1981), no. 5, 787–794. MR 625602, DOI 10.1512/iumj.1981.30.30057
- Ricardo Sa Earp and Eric Toubiana, Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini, Paris, 2009.
- Keomkyo Seo, Stable minimal hypersurfaces in the hyperbolic space, J. Korean Math. Soc. (2010), to appear, arXiv:1002:3898v1.
- Luen-Fai Tam and Detang Zhou, Stability properties for the higher dimensional catenoid in $\Bbb R^{n+1}$, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3451–3461. MR 2515414, DOI 10.1090/S0002-9939-09-09962-6
Bibliographic Information
- Pierre Bérard
- Affiliation: Institut Fourier, Université Joseph Fourier, BP 74, 38402 Saint Martin d’Hères Cedex, France
- MR Author ID: 34955
- ORCID: 0000-0001-8712-9269
- Email: Pierre.Berard@ujf-grenoble.fr
- Ricardo Sa Earp
- Affiliation: Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ 22453-900, Brazil
- Email: earp@mat.puc-rio.br
- Received by editor(s): November 2, 2009
- Published electronically: June 15, 2010
- Communicated by: Chuu-Lian Terng
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3657-3669
- MSC (2010): Primary 53C42, 53C21, 58C40
- DOI: https://doi.org/10.1090/S0002-9939-2010-10492-6
- MathSciNet review: 2661564