Universality and ultradifferentiable functions: Fekete’s theorem
HTML articles powered by AMS MathViewer
- by A. Mouze and V. Nestoridis
- Proc. Amer. Math. Soc. 138 (2010), 3945-3955
- DOI: https://doi.org/10.1090/S0002-9939-10-10380-3
- Published electronically: May 7, 2010
- PDF | Request permission
Abstract:
The purpose of this article is to establish extensions of Fekete’s Theorem concerning the existence of universal power series of $C^{\infty }$ functions defined by estimates on successive derivatives.References
- F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, and C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 417–463. MR 2396846, DOI 10.1112/plms/pdm043
- P. du Bois Reymond, Über die Fourierschen Reihen, Nachr. Kön. Ges. Wiss. Göttingen 21 (1873) 571-582.
- Emile Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. École Norm. Sup. (3) 12 (1895), 9–55 (French). MR 1508908
- Charles K. Chui and Milton N. Parnes, Approximation by overconvergence of a power series, J. Math. Anal. Appl. 36 (1971), 693–696. MR 291472, DOI 10.1016/0022-247X(71)90049-7
- G. Costakis, M. Marias, and V. Nestoridis, Universal Taylor series on open subsets of $\Bbb R^n$, Analysis (Munich) 26 (2006), no. 3, 401–409. MR 2313217, DOI 10.1524/anly.2006.26.99.401
- Karl-Goswin Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987), iv+84 (German). Dissertation, University of Trier, Trier, 1987. MR 877464
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- Jean-Pierre Kahane, Baire’s category theorem and trigonometric series, J. Anal. Math. 80 (2000), 143–182. MR 1771526, DOI 10.1007/BF02791536
- Hikosaburo Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105. MR 320743
- Wolfgang Luh, Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten, Mitt. Math. Sem. Giessen 88 (1970), i+56 (German). MR 280692
- Vassili Nestoridis, Universal Taylor series, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1293–1306 (English, with English and French summaries). MR 1427126
- Vassili Nestoridis and Chris Papadimitropoulos, Abstract theory of universal series and an application to Dirichlet series, C. R. Math. Acad. Sci. Paris 341 (2005), no. 9, 539–543 (English, with English and French summaries). MR 2181390, DOI 10.1016/j.crma.2005.09.028
- G. Pál, Zwei kleine Bemerkungen, Tokohu Math. J. 6 (1914/15) 42-43.
- Hans-Joachim Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), no. 2, 299–313. MR 963018, DOI 10.1007/BF01456977
- A. I. Seleznev, On universal power series, Mat. Sbornik N.S. 28(70) (1951), 453–460 (Russian). MR 0041928
- N. Tsirivas, Simultaneous approximation by universal series, Math. Nachr., to appear (2010).
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- A. Zygmund,Trigonometric Series, Cambridge University Press (1979).
Bibliographic Information
- A. Mouze
- Affiliation: Laboratoire de Mathématiques, UMR 8524, Cité Scientifique, 59650 Villeneuve d’Ascq, France
- Address at time of publication: École Centrale de Lille, Cité Scientifique, 59650 Villeneuve d’Ascq, France
- Email: Augustin.Mouze@math.univ-lillel.fr
- V. Nestoridis
- Affiliation: Department of Mathematics, Panepistimiopilis, University of Athens, Athens, 15784, Greece
- MR Author ID: 130365
- Email: vnestor@math.uoa.gr
- Received by editor(s): June 25, 2009
- Received by editor(s) in revised form: December 27, 2009, and January 12, 2010
- Published electronically: May 7, 2010
- Communicated by: Nigel J. Kalton
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3945-3955
- MSC (2010): Primary 30K05, 41A58, 26E10
- DOI: https://doi.org/10.1090/S0002-9939-10-10380-3
- MathSciNet review: 2679616