## Operator monotone functions, positive definite kernels and majorization

HTML articles powered by AMS MathViewer

- by Mitsuru Uchiyama PDF
- Proc. Amer. Math. Soc.
**138**(2010), 3985-3996 Request permission

## Abstract:

Let $f(t)$ be a real continuous function on an interval, and consider the operator function $f(X)$ defined for Hermitian operators $X$. We will show that if $f(X)$ is increasing w.r.t. the operator order, then for $F(t)=\int f(t)dt$ the operator function $F(X)$ is convex. Let $h(t)$ and $g(t)$ be $C^1$ functions defined on an interval $I$. Suppose $h(t)$ is non-decreasing and $g(t)$ is increasing. Then we will define the continuous kernel function $K_{h,\;g}$ by $K_{h,\;g}(t,s)=(h(t)-h(s))/(g(t)-g(s))$, which is a generalization of the Löwner kernel function. We will see that it is positive definite if and only if $h(A)\leqq h(B)$ whenever $g(A)\leqq g(B)$ for Hermitian operators $A, B$, and we give a method to construct a large number of infinitely divisible kernel functions.## References

- Julius Bendat and Seymour Sherman,
*Monotone and convex operator functions*, Trans. Amer. Math. Soc.**79**(1955), 58–71. MR**82655**, DOI 10.1090/S0002-9947-1955-0082655-4 - Rajendra Bhatia,
*Matrix analysis*, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR**1477662**, DOI 10.1007/978-1-4612-0653-8 - Rajendra Bhatia,
*Infinitely divisible matrices*, Amer. Math. Monthly**113**(2006), no. 3, 221–235. MR**2204486**, DOI 10.2307/27641890 - Rajendra Bhatia and Hideki Kosaki,
*Mean matrices and infinite divisibility*, Linear Algebra Appl.**424**(2007), no. 1, 36–54. MR**2324373**, DOI 10.1016/j.laa.2006.03.023 - Rajendra Bhatia and Takashi Sano,
*Loewner matrices and operator convexity*, Math. Ann.**344**(2009), no. 3, 703–716. MR**2501306**, DOI 10.1007/s00208-008-0323-3 - William F. Donoghue Jr.,
*Monotone matrix functions and analytic continuation*, Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, New York-Heidelberg, 1974. MR**0486556** - Carl H. Fitzgerald,
*On analytic continuation to a schlicht function*, Proc. Amer. Math. Soc.**18**(1967), 788–792. MR**219712**, DOI 10.1090/S0002-9939-1967-0219712-9 - Charles Loewner,
*On schlicht-monotonic functions of higher order*, J. Math. Anal. Appl.**14**(1966), 320–325. MR**190354**, DOI 10.1016/0022-247X(66)90033-3 - Frank Hansen and Gert Kjærgård Pedersen,
*Jensen’s inequality for operators and Löwner’s theorem*, Math. Ann.**258**(1982), no. 3, 229–241. MR**1513286**, DOI 10.1007/BF01450679 - Roger A. Horn,
*The theory of infinitely divisible matrices and kernels*, Trans. Amer. Math. Soc.**136**(1969), 269–286. MR**264736**, DOI 10.1090/S0002-9947-1969-0264736-5 - Roger A. Horn,
*On boundary values of a schlicht mapping*, Proc. Amer. Math. Soc.**18**(1967), 782–787. MR**219713**, DOI 10.1090/S0002-9939-1967-0219713-0 - Roger A. Horn,
*Schlicht mappings and infinitely divisible kernels*, Pacific J. Math.**38**(1971), 423–430. MR**310208** - Roger A. Horn and Charles R. Johnson,
*Matrix analysis*, Cambridge University Press, Cambridge, 1985. MR**832183**, DOI 10.1017/CBO9780511810817 - Fritz Kraus,
*Über konvexe Matrixfunktionen*, Math. Z.**41**(1936), no. 1, 18–42 (German). MR**1545602**, DOI 10.1007/BF01180403 - Mitsuru Uchiyama,
*Inverse functions of polynomials and orthogonal polynomials as operator monotone functions*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 4111–4123. MR**1990577**, DOI 10.1090/S0002-9947-03-03355-5 - Mitsuru Uchiyama,
*A new majorization between functions, polynomials, and operator inequalities*, J. Funct. Anal.**231**(2006), no. 1, 221–244. MR**2190170**, DOI 10.1016/j.jfa.2005.03.005 - Mitsuru Uchiyama,
*A new majorization between functions, polynomials, and operator inequalities. II*, J. Math. Soc. Japan**60**(2008), no. 1, 291–310. MR**2392012** - M. Uchiyama, A new majorization induced by matrix order, Operator Theory: Advances and Applications, 187(2008)211–216.

## Additional Information

**Mitsuru Uchiyama**- Affiliation: Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue City, Shimane 690-8504, Japan
- MR Author ID: 198919
- Email: uchiyama@riko.shimane-u.ac.jp
- Received by editor(s): September 1, 2009
- Received by editor(s) in revised form: October 2, 2009, December 14, 2009, and January 17, 2010
- Published electronically: May 10, 2010
- Communicated by: Nigel J. Kalton
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**138**(2010), 3985-3996 - MSC (2010): Primary 47A56; Secondary 15A39, 47B34
- DOI: https://doi.org/10.1090/S0002-9939-10-10386-4
- MathSciNet review: 2679620