Łojasiewicz inequality for weighted homogeneous polynomial with isolated singularity
HTML articles powered by AMS MathViewer
- by Shengli Tan, Stephen S.-T. Yau and Huaiqing Zuo
- Proc. Amer. Math. Soc. 138 (2010), 3975-3984
- DOI: https://doi.org/10.1090/S0002-9939-2010-10387-8
- Published electronically: June 4, 2010
- PDF | Request permission
Abstract:
Let $\nabla f$ be a gradient vector field of a weighted homogenous polynomial with isolated critical point at the origin. Let $(w_1,\dotsc ,w_n)$ be the weights of $f$. In this paper, we prove that the Łojasiewicz Exponent $\theta$ of $f$ is precisely equal to $\displaystyle {\max _{0\leq i\leq n}}w_i-1$. This means that for some constant $c$, $|\nabla f(z)|\geq c|z|^\theta$ in a neighborhood of $0,$ which provides the optimal lower estimate of $|\nabla f(z)|$.References
- Ould M. Abderrahmane, On the Lojasiewicz exponent and Newton polyhedron, Kodai Math. J. 28 (2005), no. 1, 106–110. MR 2122194, DOI 10.2996/kmj/1111588040
- W. Dale Brownawell, Local Diophantine Nullstellen inequalities, J. Amer. Math. Soc. 1 (1988), no. 2, 311–322. MR 928261, DOI 10.1090/S0894-0347-1988-0928261-3
- Jacek Chądzyński and Tadeusz Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, Singularities (Warsaw, 1985) Banach Center Publ., vol. 20, PWN, Warsaw, 1988, pp. 139–146. MR 1101835
- J. Chądzyński and T. Krasiński, Resultant and the Łojasiewicz exponent, Ann. Polon. Math. 61 (1995), no. 1, 95–100. MR 1318321, DOI 10.4064/ap-61-1-95-100
- Alexandru Dimca, Topics on real and complex singularities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1987. An introduction. MR 1013785, DOI 10.1007/978-3-663-13903-4
- Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) Lecture Notes in Math., vol. 956, Springer, Berlin, 1982, pp. 34–71. MR 704986, DOI 10.1007/BFb0101508
- Toshizumi Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1169–1183. MR 1065945, DOI 10.1090/S0002-9939-1991-1065945-5
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Haraux, A. and Pham, T. S., On the Łojasiewicz exponents of quasi-homogeneous functions. Preprints of the Laboratoire Jacques-Louis Lions, 2007, Université Pierre et Marie Curie, No. R07041 (http://www.ann.jussieu.fr/publications/2007/r07041.pdf)
- Tzee Char Kuo and Yung Chen Lu, On analytic function germs of two complex variables, Topology 16 (1977), no. 4, 299–310. MR 460711, DOI 10.1016/0040-9383(77)90037-4
- Zbigniew Jelonek, On the effective Nullstellensatz, Invent. Math. 162 (2005), no. 1, 1–17. MR 2198324, DOI 10.1007/s00222-004-0434-8
- Shanyu Ji, János Kollár, and Bernard Shiffman, A global Łojasiewicz inequality for algebraic varieties, Trans. Amer. Math. Soc. 329 (1992), no. 2, 813–818. MR 1046016, DOI 10.1090/S0002-9947-1992-1046016-6
- Tadeusz Krasiński, Grzegorz Oleksik, and Arkadiusz Płoski, The Łojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3387–3397. MR 2515408, DOI 10.1090/S0002-9939-09-09935-3
- Lejeune-Jalabert, M. and Teissier, B., Clôture integrale des idéaux et équisingularite, in: Séminaire Lejeune-Teissier, Centre de Mathématiques, École Polytechnique, Université Scientifique et Medicale de Grenoble, 1974.
- Andrzej Lenarcik, On the Łojasiewicz exponent of the gradient of a holomorphic function, Singularities Symposium—Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996) Banach Center Publ., vol. 44, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 149–166. MR 1677363
- Ben Lichtin, Estimation of Lojasiewicz exponents and Newton polygons, Invent. Math. 64 (1981), no. 3, 417–429. MR 632982, DOI 10.1007/BF01389274
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87–136 (French). MR 107168, DOI 10.4064/sm-18-1-87-136
- Arkadiusz Płoski, Sur l’exposant d’une application analytique. I, Bull. Polish Acad. Sci. Math. 32 (1984), no. 11-12, 669–673 (French, with English and Russian summaries). MR 786190
- Arkadiusz Płoski, Sur l’exposant d’une application analytique. II, Bull. Polish Acad. Sci. Math. 33 (1985), no. 3-4, 123–127 (French, with English and Russian summaries). MR 805025
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142 (German). MR 294699, DOI 10.1007/BF01405360
- B. Teissier, Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40 (1977), no. 3, 267–292 (French). MR 470246, DOI 10.1007/BF01425742
Bibliographic Information
- Shengli Tan
- Affiliation: Department of Mathematics, East China Normal University, No. 500, Dongchuan Road, Shanghai, People’s Republic of China, 200241
- ORCID: 0000-0001-6763-1681
- Email: sltan@math.ecnu.edu.cn
- Stephen S.-T. Yau
- Affiliation: Institute of Mathematics, East China Normal University, Shanghai, People’s Republic of China, 200241
- Address at time of publication: Department of Mathematics, Statistics, and Computer Science, M/C 249, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607-7045
- MR Author ID: 185485
- Email: yau@uic.edu
- Huaiqing Zuo
- Affiliation: Department of Mathematics, East China Normal University, No. 500, Dongchuan Road, Shanghai, People’s Republic of China, 200241 – and – Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607-7045
- MR Author ID: 872358
- Email: hqzuo@hotmail.com
- Received by editor(s): October 5, 2009
- Received by editor(s) in revised form: January 15, 2010
- Published electronically: June 4, 2010
- Additional Notes: The first author was supported by NSFC and PSSCS of Shanghai
The second author’s research was partially supported by the NSF
The third author was supported by NSFC and PSSCS of Shanghai - Communicated by: Mei-Chi Shaw
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3975-3984
- MSC (2010): Primary 32S05; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9939-2010-10387-8
- MathSciNet review: 2679619
Dedicated: Professor Charles Fefferman on the occasion of his 60th birthday