Sierpiński-Zygmund functions and other problems on lineability
HTML articles powered by AMS MathViewer
- by José L. Gámez-Merino, Gustavo A. Muñoz-Fernández, Víctor M. Sánchez and Juan B. Seoane-Sepúlveda
- Proc. Amer. Math. Soc. 138 (2010), 3863-3876
- DOI: https://doi.org/10.1090/S0002-9939-2010-10420-3
- Published electronically: May 24, 2010
- PDF | Request permission
Abstract:
We find large algebraic structures inside the following sets of pathological functions: (i) perfectly everywhere surjective functions, (ii) differentiable functions with almost nowhere continuous derivatives, (iii) differentiable nowhere monotone functions, and (iv) Sierpiński-Zygmund functions. The conclusions obtained on (i) and (iii) are improvements of some already known results.References
- Richard Aron, Domingo García, and Manuel Maestre, Linearity in non-linear problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), no. 1, 7–12 (English, with English and Spanish summaries). MR 1899348
- R. M. Aron, J. A. Conejero, A. Peris, and J. B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 1–5.
- R. M. Aron, F. J. García-Pacheco, D. Pérez-García, and J. B. Seoane-Sepúlveda, On dense-lineability of sets of functions on $\mathbb R$, Topology 48 (2009), 149–156.
- Richard Aron, V. I. Gurariy, and J. B. Seoane, Lineability and spaceability of sets of functions on $\Bbb R$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803. MR 2113929, DOI 10.1090/S0002-9939-04-07533-1
- Richard M. Aron, David Pérez-García, and Juan B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), no. 1, 83–90. MR 2261701, DOI 10.4064/sm175-1-5
- Richard M. Aron and Juan B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on $\Bbb C$, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31. MR 2327324
- Frédéric Bayart and Lucas Quarta, Algebras in sets of queer functions, Israel J. Math. 158 (2007), 285–296. MR 2342549, DOI 10.1007/s11856-007-0014-x
- L. Bernal-González, Dense-lineability in spaces of continuous functions, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3163–3169. MR 2407080, DOI 10.1090/S0002-9939-08-09495-1
- H. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 82 (1922), 53–61.
- Geraldo Botelho, Diogo Diniz, and Daniel Pellegrino, Lineability of the set of bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 357 (2009), no. 1, 171–175. MR 2526816, DOI 10.1016/j.jmaa.2009.03.062
- G. Botelho, M. Matos, and D. Pellegrino, Lineability of summing sets of homogeneous polynomials, Linear Multilinear Algebra 58 (2010), 61–74.
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448
- James Foran, Fundamentals of real analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 144, Marcel Dekker, Inc., New York, 1991. MR 1201817
- D. García, B.C. Grecu, M. Maestre, and J. B. Seoane-Sepúlveda, Infinite dimensional Banach spaces of functions with nonlinear properties, Math. Nachr. 283 (2010), no. 5, 712-720.
- Bernard R. Gelbaum and John M. H. Olmsted, Counterexamples in analysis, Dover Publications, Inc., Mineola, NY, 2003. Corrected reprint of the second (1965) edition. MR 1996162
- V. I. Gurariĭ, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971–973 (Russian). MR 0199674
- V. I. Gurariy, Linear spaces composed of nondifferentiable functions, C. R. Acad. Bulgare Sci. 44 (1991), 13–16.
- A. B. Kharazishvili, Strange functions in real analysis, 2nd ed., Pure and Applied Mathematics (Boca Raton), vol. 272, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2193523
- H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives, Gauthier-Villars, Paris, 1904.
- Jaroslav Lukeš, Jan Malý, and Luděk Zajíček, Fine topology methods in real analysis and potential theory, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, Berlin, 1986. MR 861411, DOI 10.1007/BFb0075894
- G. A. Muñoz-Fernández, N. Palmberg, D. Puglisi, and J. B. Seoane-Sepúlveda, Lineability in subsets of measure and function spaces, Linear Algebra Appl. 428 (2008), no. 11-12, 2805–2812. MR 2416590, DOI 10.1016/j.laa.2008.01.008
- D. Puglisi and J. B. Seoane-Sepúlveda, Bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 338 (2008), no. 1, 292–298. MR 2386416, DOI 10.1016/j.jmaa.2007.05.029
- Juichi Shinoda, Some consequences of Martin’s axiom and the negation of the continuum hypothesis, Nagoya Math. J. 49 (1973), 117–125. MR 319754
- W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316–318.
Bibliographic Information
- José L. Gámez-Merino
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid 28040, Spain
- MR Author ID: 634110
- Email: jlgamez@mat.ucm.es
- Gustavo A. Muñoz-Fernández
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid 28040, Spain
- Email: gustavo_fernandez@mat.ucm.es
- Víctor M. Sánchez
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid 28040, Spain
- Email: victorms@mat.ucm.es
- Juan B. Seoane-Sepúlveda
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid 28040, Spain
- MR Author ID: 680972
- Email: jseoane@mat.ucm.es
- Received by editor(s): September 17, 2009
- Received by editor(s) in revised form: February 1, 2010
- Published electronically: May 24, 2010
- Additional Notes: The first, second and fourth authors were supported by the Spanish Ministry of Science and Innovation, grant MTM2009-07848.
The third author was supported by the Spanish Ministry of Science and Innovation, grant MTM2008-02652. - Communicated by: Michael T. Lacey
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 3863-3876
- MSC (2010): Primary 15A03, 26A15, 26A27, 46J10
- DOI: https://doi.org/10.1090/S0002-9939-2010-10420-3
- MathSciNet review: 2679609
Dedicated: Dedicated to Professor Richard M. Aron on his 65$^{\text {th}}$ anniversary