A note on complete resolutions
Authors:
Fotini Dembegioti and Olympia Talelli
Journal:
Proc. Amer. Math. Soc. 138 (2010), 3815-3820
MSC (2010):
Primary 20J99
DOI:
https://doi.org/10.1090/S0002-9939-2010-10422-7
Published electronically:
May 20, 2010
MathSciNet review:
2679604
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using complete resolutions. It is also shown that for an 𝐿𝐻𝔉
-group $G$ the kernels in a complete resolution of a $\mathbb ZG$-module coincide with Benson’s class of cofibrant modules.
- Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967 (French). Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67; Texte rédigé, d’après des exposés de Maurice Auslander, Marguerite Mangeney, Christian Peskine et Lucien Szpiro; École Normale Supérieure de Jeunes Filles. MR 0225844
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- A. Bahlekeh, F. Dembegioti, and O. Talelli, Gorenstein dimension and proper actions, Bull. London Math. Soc. 41 (2009), 859-871.
- D. J. Benson, Complexity and varieties for infinite groups. I, II, J. Algebra 193 (1997), no. 1, 260–287, 288–317. MR 1456576, DOI https://doi.org/10.1006/jabr.1996.6996
- D. J. Benson and Jon F. Carlson, Products in negative cohomology, J. Pure Appl. Algebra 82 (1992), no. 2, 107–129. MR 1182934, DOI https://doi.org/10.1016/0022-4049%2892%2990116-W
- Lars Winther Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. MR 1799866
- Jonathan Cornick and Peter H. Kropholler, On complete resolutions, Topology Appl. 78 (1997), no. 3, 235–250. MR 1454602, DOI https://doi.org/10.1016/S0166-8641%2896%2900126-5
- T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl. 25 (1987), no. 2, 203–223. Singapore topology conference (Singapore, 1985). MR 884544, DOI https://doi.org/10.1016/0166-8641%2887%2990015-0
- François Goichot, Homologie de Tate-Vogel équivariante, J. Pure Appl. Algebra 82 (1992), no. 1, 39–64 (French, with English summary). MR 1181092, DOI https://doi.org/10.1016/0022-4049%2892%2990009-5
- Bruce M. Ikenaga, Homological dimension and Farrell cohomology, J. Algebra 87 (1984), no. 2, 422–457. MR 739945, DOI https://doi.org/10.1016/0021-8693%2884%2990148-0
- Peter H. Kropholler, On groups of type $({\rm FP})_\infty $, J. Pure Appl. Algebra 90 (1993), no. 1, 55–67. MR 1246274, DOI https://doi.org/10.1016/0022-4049%2893%2990136-H
- P. H. Kropholler and Olympia Talelli, On a property of fundamental groups of graphs of finite groups, J. Pure Appl. Algebra 74 (1991), no. 1, 57–59. MR 1129129, DOI https://doi.org/10.1016/0022-4049%2891%2990048-7
- Guido Mislin, Tate cohomology for arbitrary groups via satellites, Topology Appl. 56 (1994), no. 3, 293–300. MR 1269317, DOI https://doi.org/10.1016/0166-8641%2894%2990081-7
- Guido Mislin and Olympia Talelli, On groups which act freely and properly on finite dimensional homotopy spheres, Computational and geometric aspects of modern algebra (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 208–228. MR 1776776, DOI https://doi.org/10.1017/CBO9780511600609.015
- Olympia Talelli, Periodicity in group cohomology and complete resolutions, Bull. London Math. Soc. 37 (2005), no. 4, 547–554. MR 2143734, DOI https://doi.org/10.1112/S0024609305004273
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20J99
Retrieve articles in all journals with MSC (2010): 20J99
Additional Information
Fotini Dembegioti
Affiliation:
Department of Mathematics, University of Athens, 15784 Athens, Greece
Olympia Talelli
Affiliation:
Department of Mathematics, University of Athens, 15784 Athens, Greece
Received by editor(s):
May 20, 2009
Received by editor(s) in revised form:
January 28, 2010
Published electronically:
May 20, 2010
Communicated by:
Birge Huisgen-Zimmermann
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.