Integrability criterion for abelian extensions of Lie groups
HTML articles powered by AMS MathViewer
- by Pedram Hekmati
- Proc. Amer. Math. Soc. 138 (2010), 4137-4148
- DOI: https://doi.org/10.1090/S0002-9939-2010-10423-9
- Published electronically: June 9, 2010
- PDF | Request permission
Abstract:
We establish a criterion for when an abelian extension of infinite-dimensional Lie algebras $\mathfrak {\hat {g}} = \mathfrak {g} \oplus _\omega \mathfrak {a}$ integrates to a corresponding Lie group extension $A \hookrightarrow \widehat {G} \twoheadrightarrow G$, where $G$ is connected, simply connected and $A \cong \mathfrak {a} / \Gamma$ for some discrete subgroup $\Gamma \subseteq \mathfrak {a}$. When $\pi _1(G)\neq 0$, the kernel $A$ is replaced by a central extension $\widehat {A}$ of $\pi _1(G)$ by $A$.References
- A. L. Carey and M. K. Murray, String structures and the path fibration of a group, Comm. Math. Phys. 141 (1991), no. 3, 441–452. MR 1134932
- Samuel Eilenberg, On spherical cycles, Bull. Amer. Math. Soc. 47 (1941), 432–434. MR 4778, DOI 10.1090/S0002-9904-1941-07469-0
- Helge Glöckner, Fundamental problems in the theory of infinite-dimensional Lie groups, J. Geom. Symmetry Phys. 5 (2006), 24–35. MR 2269879
- Andreas Kriegl and Peter W. Michor, Regular infinite-dimensional Lie groups, J. Lie Theory 7 (1997), no. 1, 61–99. MR 1450745
- Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997. MR 1471480, DOI 10.1090/surv/053
- Andrei Losev, Gregory Moore, Nikita Nekrasov, and Samson Shatashvili, Central extensions of gauge groups revisited, Selecta Math. (N.S.) 4 (1998), no. 1, 117–123. MR 1623710, DOI 10.1007/s000290050026
- Peter Michor and Josef Teichmann, Description of infinite-dimensional abelian regular Lie groups, J. Lie Theory 9 (1999), no. 2, 487–489. MR 1718235
- Jouko Mickelsson, Current algebras and groups, Plenum Monographs in Nonlinear Physics, Plenum Press, New York, 1989. MR 1032521, DOI 10.1007/978-1-4757-0295-8
- Jouko Mickelsson, Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization, Comm. Math. Phys. 110 (1987), no. 2, 173–183. MR 887993
- M. K. Murray, Another construction of the central extension of the loop group, Comm. Math. Phys. 116 (1988), no. 1, 73–80. MR 937361
- J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983) North-Holland, Amsterdam, 1984, pp. 1007–1057. MR 830252
- Karl-Hermann Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques. Fasc. XV, Trav. Math., vol. 15, Univ. Luxemb., Luxembourg, 2004, pp. 69–194. MR 2143422
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Cornelia Vizman, The path group construction of Lie group extensions, J. Geom. Phys. 58 (2008), no. 7, 860–873. MR 2426244, DOI 10.1016/j.geomphys.2008.02.006
Bibliographic Information
- Pedram Hekmati
- Affiliation: Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Address at time of publication: School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Email: pedram@kth.se, pedram.hekmati@adelaide.edu.au
- Received by editor(s): January 20, 2010
- Received by editor(s) in revised form: February 2, 2010
- Published electronically: June 9, 2010
- Communicated by: Varghese Mathai
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 4137-4148
- MSC (2010): Primary 22E65, 20K35
- DOI: https://doi.org/10.1090/S0002-9939-2010-10423-9
- MathSciNet review: 2679636