REALIZATION OF THE MAPPING CLASS GROUP OF HANDLEBODY BY DIFFEOMORPHISMS

SUSUMU HIROSE

(Communicated by Daniel Ruberman)

Abstract. For the oriented 3-dimensional handlebody constructed from a 3-ball by attaching g 1-handles, it is shown that the natural surjection from the group of orientation-preserving diffeomorphisms of it to the mapping class group of it has no section when g is at least 6.

Let M be an n-dimensional compact oriented manifold and S be a subset of ∂M. We denote the group of orientation-preserving diffeomorphisms of M whose restrictions on S are the identity by $\text{Diff}(M, S)$, the subgroups of them consisting of elements that are isotopic to the identity by $\text{Diff}_0(M, S)$, and the quotient group $\text{Diff}(M, S)/\text{Diff}_0(M, S)$ by $\mathcal{M}(M, S)$. For an element f of $\text{Diff}(M, S)$, let $[f]$ be the element of $\mathcal{M}(M, S)$ represented by f. The homomorphism $\pi_{M, S}$ from $\text{Diff}(M, S)$ to $\mathcal{M}(M, S)$ defined by $\pi_{M, S}(f) = [f]$ is a surjection. Let Γ be a subgroup of $\mathcal{M}(M, S)$. We call a homomorphism s from Γ to $\text{Diff}(M, S)$ which satisfies $\pi_{M, S} \circ s = \text{id}_{\Gamma}$ a section for $\pi_{M, S}$ over Γ. Morita [7] showed that the natural surjection from $\text{Diff}^2(\Sigma_g)$ to the mapping class group $\mathcal{M}(\Sigma_g)$ of Σ_g has no section over $\mathcal{M}(\Sigma_g)$ when $g \geq 5$. Markovic [5] (when $g \geq 6$) and Markovic and Saric [6] (when $g \geq 2$) showed that the natural surjection from $\text{Homeo}(\Sigma_g)$ to $\mathcal{M}(\Sigma_g)$ has no section over $\mathcal{M}(\Sigma_g)$. By using the different method from them, Franks and Handel [2] showed that the natural surjection from $\text{Diff}(\Sigma_g)$ to $\mathcal{M}(\Sigma_g)$ has no section over $\mathcal{M}(\Sigma_g)$ when $g \geq 3$.

Let H_g be an oriented 3-dimensional handlebody of genus g which is an oriented 3-manifold constructed from a 3-ball by attaching g 1-handles. Let Σ_g be an oriented closed surface of genus g; then $\partial H_g = \Sigma_g$. The restriction to the boundary defines a homomorphism $\rho_\partial : \text{Diff}(H_g) \to \text{Diff}(\Sigma_g)$, and ρ_∂ induces an injection $\mathcal{M}(H_g) \to \mathcal{M}(\Sigma_g)$ since H_g is an irreducible 3-manifold. We will show:

Theorem 1. If $g \geq 6$, there is no section for $\pi_{H_g} : \text{Diff}(H_g) \to \mathcal{M}(H_g)$ over $\mathcal{M}(H_g)$.

For contradiction, we assume that there is a section $s : \mathcal{M}(H_g) \to \text{Diff}(H_g)$. Let Γ be a subgroup of $\mathcal{M}(H_g)$, and i_Γ be the inclusion from Γ to $\mathcal{M}(H_g)$. Then Γ is a
subgroup of \(\mathcal{M}(\Sigma_g) \), and the composition \(\rho_0 \circ s \circ \iota_1 \) is a section for \(\pi_{\Sigma_g} : \text{Diff}(\Sigma_g) \to \mathcal{M}(\Sigma_g) \) over \(\Gamma \). Therefore, if we can find a subgroup \(\Gamma \) of \(\mathcal{M}(H_g) \), over which there is no section for \(\pi_{\Sigma_g} \), then Theorem 1 follows.

Let \(D \) be a 2-disk in \(\Sigma_g \), and \(\Sigma_{g,1} \) be \(\Sigma_g \setminus \text{int} \, D \). Let \(c \) be an essential simple closed curve on \(\Sigma_g \) such that \(\Sigma_g \setminus c \) is not connected. Then the closure of one component of \(\Sigma_g \setminus c \) is diffeomorphic to \(\Sigma_{g,1} \), and the closure of the other component of \(\Sigma_g \setminus c \) is diffeomorphic to \(\Sigma_{g,1} \). We remark that \(g = g_1 + g_2 \) and \(g_1, g_2 \geq 1 \). These diffeomorphisms induce injections \(\mathcal{M}(\Sigma_{g_1,1}, \partial \Sigma_{g_1,1}) \to \mathcal{M}(\Sigma_g) \) and \(\mathcal{M}(\Sigma_{g_2,1}, \partial \Sigma_{g_2,1}) \to \mathcal{M}(\Sigma_g) \) (see [8]). By these injections, we consider \(\mathcal{M}(\Sigma_{g_1,1}, \partial \Sigma_{g_1,1}) \) and \(\mathcal{M}(\Sigma_{g_2,1}, \partial \Sigma_{g_2,1}) \) as subgroups of \(\mathcal{M}(\Sigma_g) \). From Theorem 1.6 in [2] proved by Franks and Handel, we see:

Theorem 2 ([2]). Let \(\Gamma_1 \) be a nontrivial finitely generated subgroup of \(\mathcal{M}(\Sigma_{g_1,1}, \partial \Sigma_{g_1,1}) \) such that \(H^1(\Gamma_1, \mathbb{R}) = 0 \) and \(\mu \) be an element of \(\mathcal{M}(\Sigma_{g_2,1}, \partial \Sigma_{g_2,1}) \) which is represented by a pseudo-Anosov homeomorphism on \(\partial \Sigma_{g_1,1} \). Then there is no section for \(\pi_{\Sigma_g} : \text{Diff}(\Sigma_g) \to \mathcal{M}(\Sigma_g) \) over \((\Gamma_1, \mu) \), where \((\Gamma_1, \mu) \) is a subgroup of \(\mathcal{M}(\Sigma_g) \) generated by elements of \(\Gamma_1 \) and \(\mu \).

We assume \(g \geq 6 \). The 3-manifold \(\Sigma_{2,1} \times [0, 1] \) is diffeomorphic to \(H_4 \). Let \(D_1 \) be a 2-disk in \(\text{int} \, (\partial \Sigma_{2,1} \times [0, 1]) \subset \partial (\Sigma_{2,1} \times [0, 1]) \). \(D_2 \) and \(D_3 \) be disjoint 2-disks on \(\partial H_{g-6} \), and \(D_4 \) be a 2-disk on \(\partial H_2 \). Along these 2-disks, we glue \(\Sigma_{2,1} \times [0, 1] \) to \(H_g \). These inclusions induce natural homomorphisms \(i_1 : \mathcal{M}(\Sigma_{2,1} \times [0, 1], \partial \Sigma_{2,1} \times [0, 1]) \to \mathcal{M}(H_g) \) and \(i_2 : \mathcal{M}(H_2, D_4) \to \mathcal{M}(H_g) \). If \([h] \) is in \(\mathcal{M}(\Sigma_{2,1} \times [0, 1], \partial \Sigma_{2,1} \times [0, 1]) \) (resp. \(\mathcal{M}(H_2, D_4) \)) represented by \(h \in \text{Diff}(\Sigma_{2,1} \times [0, 1], \partial \Sigma_{2,1} \times [0, 1]) \) (resp. \(\text{Diff}(H_2, D_4) \)), then \(i_1([h]) \) (resp. \(i_2([h]) \)) is represented by the diffeomorphism obtained by extending \(h \) to \(H_g \) using the identity mapping on \(H_g \setminus \Sigma_{2,1} \times [0, 1] \) (resp. \(H_g \setminus H_2 \)).

We define homomorphisms \(\Pi : \text{Diff}(\Sigma_{2,1}, \partial \Sigma_{2,1}) \to \text{Diff}(\Sigma_{2,1} \times [0, 1], \partial \Sigma_{2,1} \times [0, 1]) \) by \(\Pi(h) = h \times \text{id}_{[0,1]} \), and \(I_1 : \text{Diff}(\Sigma_{2,1} \times [0, 1], \partial \Sigma_{2,1} \times [0, 1]) \to \text{Diff}(H_2) \) by the identity on \(H_2 \setminus \Sigma_{2,1} \times [0, 1] \). Then the composition \(I_1 \circ \Pi \) induces a homomorphism \(P : \mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1}) \to \mathcal{M}(H_2) \). By applying Corollary 4.2 of [8] to the subsurface \(\Sigma_{2,1} \times [0, 1] \subset \partial H_g \), the injectivity of \(P \) is shown. Korkmaz [4] showed that \(H_1(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1}), \mathbb{Z}) = \mathbb{Z}/10\mathbb{Z} \); hence \(H^1(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1}), \mathbb{R}) = 0 \). Therefore, \(\Gamma_1 = P(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1})) \) satisfies the assumption of Theorem 2 when \(g_1 = g - 2, g_2 = 2 \).

Fathi and Laudenbach [3] constructed a pseudo-Anosov homeomorphism \(\phi \) on \(\partial(H_2) \) which is a restriction of a homeomorphism on \(H_2 \). The definitions of pseudo-Anosov homeomorphisms and terminologies (e.g., singular foliation) related to them can be found in [1]. Any pseudo-Anosov homeomorphism preserves the set of singular points of the singular foliation which is preserved by this homeomorphism. Since the number of singular points of the singular foliation is finite, a proper power of \(\phi \), say \(\phi^n \), fixes some points. Let \(p \) be a point fixed by \(\phi^n \). Then \(\phi^n \) defines a pseudo-Anosov homeomorphism on \(\partial(H_2) \setminus p = \text{int} \, \Sigma_{2,1} \). Let \(\mu \) be an element of \(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1}) \subset \mathcal{M}(\Sigma_g) \) represented by this homeomorphism. Then \(\mu \) is an element of \(\mathcal{M}(H_g) \) and satisfies the assumption of Theorem 2 when \(g_1 = g - 2, g_2 = 2 \).
Then \(\langle P(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1})), \mu \rangle \) is a subgroup of \(\mathcal{M}(H_g) \) and, by Theorem 2, there is no section over \(\langle P(\mathcal{M}(\Sigma_{2,1}, \partial \Sigma_{2,1})), \mu \rangle \). Therefore, there is no section for \(\pi_{H_g} : \text{Diff}(H_g) \to \mathcal{M}(H_g) \) over \(\mathcal{M}(H_g) \).

Remark 3. Two subgroups \(G_1 \) and \(G_2 \) of \(\mathcal{M}(\Sigma_g) \) are **conjugate** if there is an element \(h \in \mathcal{M}(\Sigma_g) \) such that \(hG_1h^{-1} = G_2 \). When two subgroups \(G_1 \) and \(G_2 \) of \(\mathcal{M}(\Sigma_g) \) are conjugate, there is a section for \(\pi_{\Sigma_g} \) over \(G_1 \) if and only if there is a section for \(\pi_{\Sigma_g} \) over \(G_2 \). In the above proof of Theorem 1, it is shown that there is no section for \(\pi_{\Sigma_g} \) over \(\mathcal{M}(H_g) \) under any identification of \(\partial H_g \) with \(\Sigma_g \), since, under the different identifications of \(\partial H_g \) with \(\Sigma_g \), \(\mathcal{M}(H_g) \) is regarded as a conjugate subgroup of \(\mathcal{M}(\Sigma_g) \).

ACKNOWLEDGMENT

The author would like to thank the referee for valuable comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, SAGA UNIVERSITY, SAGA, 840–8502 JAPAN

E-mail address: hirose@ms.saga-u.ac.jp