On simultaneous uniform approximation to a $p$-adic number and its square
HTML articles powered by AMS MathViewer
- by Yann Bugeaud
- Proc. Amer. Math. Soc. 138 (2010), 3821-3826
- DOI: https://doi.org/10.1090/S0002-9939-2010-10491-4
- Published electronically: May 21, 2010
- PDF | Request permission
Abstract:
Let $p$ be a prime number. We show that a result of Teulié is nearly best possible by constructing a $p$-adic number $\xi$ such that $\xi$ and $\xi ^2$ are uniformly simultaneously very well approximable by rational numbers with the same denominator. The same conclusion was previously reached by Zelo in his PhD thesis, but our approach using $p$-adic continued fractions is more direct and simpler.References
- J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), no. 1, 39–66. MR 1869317, DOI 10.1006/jnth.2001.2669
- H. Davenport and Wolfgang M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1968/69), 393–416. MR 246822, DOI 10.4064/aa-15-4-393-416
- K. Mahler, Zur Approximation $P$-adischer Irrationalzahlen, Nieuw Arch. Wisk. 18 (1934), 22–34.
- Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384
- Damien Roy, Approximation simultanée d’un nombre et de son carré, C. R. Math. Acad. Sci. Paris 336 (2003), no. 1, 1–6 (French, with English and French summaries). MR 1968892, DOI 10.1016/S1631-073X(02)00005-5
- Damien Roy, Approximation to real numbers by cubic algebraic integers. II, Ann. of Math. (2) 158 (2003), no. 3, 1081–1087. MR 2031862, DOI 10.4007/annals.2003.158.1081
- Damien Roy, Approximation to real numbers by cubic algebraic integers. I, Proc. London Math. Soc. (3) 88 (2004), no. 1, 42–62. MR 2018957, DOI 10.1112/S002461150301428X
- Olivier Teulié, Approximation d’un nombre $p$-adique par des nombres algébriques, Acta Arith. 102 (2002), no. 2, 137–155 (French). MR 1889625, DOI 10.4064/aa102-2-3
- D. Zelo, Simultaneous approximation to real and $p$-adic numbers, PhD thesis, Univ. Ottawa, 2009, arXiv:0903.0086.
Bibliographic Information
- Yann Bugeaud
- Affiliation: Département de Mathématiques, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg, France
- Email: bugeaud@math.unistra.fr
- Received by editor(s): January 29, 2010
- Published electronically: May 21, 2010
- Communicated by: Ken Ono
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 3821-3826
- MSC (2010): Primary 11J13, 11J61
- DOI: https://doi.org/10.1090/S0002-9939-2010-10491-4
- MathSciNet review: 2679605