On Corson compacta and embeddings of $C(K)$ spaces
HTML articles powered by AMS MathViewer
- by Witold Marciszewski and Grzegorz Plebanek
- Proc. Amer. Math. Soc. 138 (2010), 4281-4289
- DOI: https://doi.org/10.1090/S0002-9939-2010-10403-3
- Published electronically: May 17, 2010
- PDF | Request permission
Abstract:
We investigate properties of those compact spaces $K$ for which the Banach space $C(K)$ can be isomorphically embedded into a space $C(L)$, where $L$ is Corson compact. We show that in such a case $K$ must be Corson compact provided $K$ has some additional measure–theoretic property. The result is applicable to Rosenthal compacta and several other classes of compact spaces $K$.References
- S. Argyros, S. Mercourakis, and S. Negrepontis, Functional-analytic properties of Corson-compact spaces, Studia Math. 89 (1988), no. 3, 197–229. MR 956239, DOI 10.4064/sm-89-3-197-229
- Piotr Borodulin-Nadzieja, Measures on minimally generated Boolean algebras, Topology Appl. 154 (2007), no. 18, 3107–3124. MR 2364639, DOI 10.1016/j.topol.2007.03.014
- J. Bourgain, D. H. Fremlin, and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), no. 4, 845–886. MR 509077, DOI 10.2307/2373913
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Mirna D amonja and Grzegorz Plebanek, Precalibre pairs of measure algebras, Topology Appl. 144 (2004), no. 1-3, 67–94. MR 2097129, DOI 10.1016/j.topol.2004.04.002
- Mirna D amonja and Grzegorz Plebanek, On Efimov spaces and Radon measures, Topology Appl. 154 (2007), no. 10, 2063–2072. MR 2324916, DOI 10.1016/j.topol.2006.04.029
- Mirna D amonja and Grzegorz Plebanek, Strictly positive measures on Boolean algebras, J. Symbolic Logic 73 (2008), no. 4, 1416–1432. MR 2467227, DOI 10.2178/jsl/1230396929
- Elói Medina Galego, On isomorphism classes of $C({\bf 2}^{\mathfrak {m}}\oplus [0,\alpha ])$ spaces, Fund. Math. 204 (2009), no. 1, 87–95. MR 2507691, DOI 10.4064/fm204-1-5
- Gilles Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), no. 2, 293–306 (French, with English summary). MR 615679, DOI 10.2140/pjm.1980.91.293
- James Hagler, On the structure of $S$ and $C(S)$ for $S$ dyadic, Trans. Amer. Math. Soc. 214 (1975), 415–428. MR 388062, DOI 10.1090/S0002-9947-1975-0388062-1
- Richard Haydon, On dual $L^{1}$-spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978), no. 2, 142–152. MR 516250, DOI 10.1007/BF02760545
- Ondřej F. K. Kalenda, Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15 (2000), no. 1, 1–85. MR 1792980
- Elliott Pearl (ed.), Open problems in topology. II, Elsevier B. V., Amsterdam, 2007. MR 2367385
- Kenneth Kunen, A compact $L$-space under CH, Topology Appl. 12 (1981), no. 3, 283–287. MR 623736, DOI 10.1016/0166-8641(81)90006-7
- Kenneth Kunen and Jan van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), no. 1, 61–72. MR 1330107
- Klaas Pieter Hart, Jun-iti Nagata, and Jerry E. Vaughan (eds.), Encyclopedia of general topology, Elsevier Science Publishers, B.V., Amsterdam, 2004. MR 2049453
- W. Marciszewski, G. Plebanek, On measures on Rosenthal compacta, preprint (2010).
- Sophocles Mercourakis, Some remarks on countably determined measures and uniform distribution of sequences, Monatsh. Math. 121 (1996), no. 1-2, 79–111. MR 1375642, DOI 10.1007/BF01299640
- Jan van Mill and George M. Reed (eds.), Open problems in topology, North-Holland Publishing Co., Amsterdam, 1990. MR 1078636
- G. Plebanek, On some properties of Banach spaces of continuous functions, Seminaire d’Initiation à l’Analyse (G. Choquet et al.), 31 (1991/92), Université Paris VI.
- Grzegorz Plebanek, Nonseparable Radon measures and small compact spaces, Fund. Math. 153 (1997), no. 1, 25–40. MR 1450994, DOI 10.4064/fm-153-1-25-40
- Grzegorz Plebanek, Approximating Radon measures on first-countable compact spaces, Colloq. Math. 86 (2000), no. 1, 15–23. MR 1799884, DOI 10.4064/cm-86-1-15-23
- Grzegorz Plebanek, Convex Corson compacta and Radon measures, Fund. Math. 175 (2002), no. 2, 143–154. MR 1969632, DOI 10.4064/fm175-2-4
- Roman Pol, Note on the spaces $P(S)$ of regular probability measures whose topology is determined by countable subsets, Pacific J. Math. 100 (1982), no. 1, 185–201. MR 661448, DOI 10.2140/pjm.1982.100.185
- Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR 756174, DOI 10.1090/memo/0307
- Stevo Todorčević, Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212. MR 1685782, DOI 10.1090/S0894-0347-99-00312-4
- Stevo Todorcevic, Chain-condition methods in topology, Topology Appl. 101 (2000), no. 1, 45–82. MR 1730899, DOI 10.1016/S0166-8641(98)00112-6
Bibliographic Information
- Witold Marciszewski
- Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02–097 Warszawa, Poland
- MR Author ID: 119645
- Email: wmarcisz@mimuw.edu.pl
- Grzegorz Plebanek
- Affiliation: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- MR Author ID: 239421
- Email: grzes@math.uni.wroc.pl
- Received by editor(s): September 11, 2009
- Received by editor(s) in revised form: January 24, 2010
- Published electronically: May 17, 2010
- Additional Notes: Research of the first author was partially supported by MNiSW Grant No. N N201 382034.
The second author was partially supported by grant 2191/W/IM/09 from the University of Wrocław. - Communicated by: Nigel J. Kalton
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 4281-4289
- MSC (2010): Primary 46B26, 46E15; Secondary 46E27
- DOI: https://doi.org/10.1090/S0002-9939-2010-10403-3
- MathSciNet review: 2680054