Complex equiangular Parseval frames and Seidel matrices containing $p$th roots of unity
HTML articles powered by AMS MathViewer
- by Bernhard G. Bodmann and Helen J. Elwood
- Proc. Amer. Math. Soc. 138 (2010), 4387-4404
- DOI: https://doi.org/10.1090/S0002-9939-2010-10435-5
- Published electronically: May 27, 2010
- PDF | Request permission
Abstract:
We derive necessary conditions for the existence of complex Seidel matrices containing $p$th roots of unity and having exactly two eigenvalues, under the assumption that $p$ is prime. The existence of such matrices is equivalent to the existence of equiangular Parseval frames with Gram matrices whose off-diagonal entries are a common multiple of the $p$th roots of unity. Explicitly examining the necessary conditions for $p=5$ and $p=7$ rules out the existence of many such frames with a number of vectors less than 50, similar to previous results in the cube roots case. On the other hand, we confirm the existence of $p^2\times p^2$ Seidel matrices containing $p$th roots of unity, and thus the existence of the associated complex equiangular Parseval frames, for any $p\ge 2$. The construction of these Seidel matrices also yields a family of previously unknown Butson-type complex Hadamard matrices.References
- D. M. Appleby, Symmetric informationally complete-positive operator valued measures and the extended Clifford group, J. Math. Phys. 46 (2005), no. 5, 052107, 29. MR 2142983, DOI 10.1063/1.1896384
- Bernhard G. Bodmann and Vern I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005), 118–146. MR 2149656, DOI 10.1016/j.laa.2005.02.016
- Bernhard G. Bodmann, Vern I. Paulsen, and Mark Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl. 430 (2009), no. 1, 396–417. MR 2460526, DOI 10.1016/j.laa.2008.08.002
- A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962), 894–898. MR 142557, DOI 10.1090/S0002-9939-1962-0142557-0
- Peter G. Casazza and Jelena Kovačević, Equal-norm tight frames with erasures, Adv. Comput. Math. 18 (2003), no. 2-4, 387–430. Frames. MR 1968127, DOI 10.1023/A:1021349819855
- B. Et-Taoui, Equiangular lines in $\textbf {C}^r$, Indag. Math. (N.S.) 11 (2000), no. 2, 201–207. MR 1813161, DOI 10.1016/S0019-3577(00)89078-3
- B. Et-Taoui, Equiangular lines in $\textbf {C}^r$. II, Indag. Math. (N.S.) 13 (2002), no. 4, 483–486. MR 2015832, DOI 10.1016/S0019-3577(02)80027-1
- Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 1946982, DOI 10.1007/978-0-8176-8224-8
- Chris Godsil and Aidan Roy, Equiangular lines, mutually unbiased bases, and spin models, European J. Combin. 30 (2009), no. 1, 246–262. MR 2460230, DOI 10.1016/j.ejc.2008.01.002
- J.-M. Goethals and J. J. Seidel, Strongly regular graphs derived from combinatorial designs, Canadian J. Math. 22 (1970), 597–614. MR 282872, DOI 10.4153/CJM-1970-067-9
- Vivek K. Goyal, Jelena Kovačević, and Jonathan A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), no. 3, 203–233. MR 1829801, DOI 10.1006/acha.2000.0340
- Markus Grassl, Tomography of quantum states in small dimensions, Proceedings of the Workshop on Discrete Tomography and its Applications, Electron. Notes Discrete Math., vol. 20, Elsevier Sci. B. V., Amsterdam, 2005, pp. 151–164. MR 2301093, DOI 10.1016/j.endm.2005.05.060
- Stuart G. Hoggar, $64$ lines from a quaternionic polytope, Geom. Dedicata 69 (1998), no. 3, 287–289. MR 1609397, DOI 10.1023/A:1005009727232
- Roderick B. Holmes and Vern I. Paulsen, Optimal frames for erasures, Linear Algebra Appl. 377 (2004), 31–51. MR 2021601, DOI 10.1016/j.laa.2003.07.012
- Thomas W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1974. MR 0354211
- Deepti Kalra, Complex equiangular cyclic frames and erasures, Linear Algebra Appl. 419 (2006), no. 2-3, 373–399. MR 2277977, DOI 10.1016/j.laa.2006.05.008
- J. Kovačević and A. Chebira, Life beyond bases: The advent of frames (part I), IEEE Signal Processing Magazine 24 (2007), no. 4, 86–104.
- —, Life beyond bases: The advent of frames (part II), IEEE Signal Processing Magazine 24 (2007), no. 5, 115–125.
- P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Algebra 24 (1973), 494–512. MR 307969, DOI 10.1016/0021-8693(73)90123-3
- Joseph M. Renes, Equiangular spherical codes in quantum cryptography, Quantum Inf. Comput. 5 (2005), no. 1, 81–92. MR 2123901
- Joseph M. Renes, Robin Blume-Kohout, A. J. Scott, and Carlton M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45 (2004), no. 6, 2171–2180. MR 2059685, DOI 10.1063/1.1737053
- J. J. Seidel, A survey of two-graphs, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976, pp. 481–511 (English, with Italian summary). MR 0550136
- Thomas Strohmer, A note on equiangular tight frames, Linear Algebra Appl. 429 (2008), no. 1, 326–330. MR 2419160, DOI 10.1016/j.laa.2008.02.030
- Thomas Strohmer and Robert W. Heath Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257–275. MR 1984549, DOI 10.1016/S1063-5203(03)00023-X
- Wojciech Tadej and Karol Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006), no. 2, 133–177. MR 2244963, DOI 10.1007/s11080-006-8220-2
- W. K. Wootters, Quantum measurements and finite geometry, Found. Phys. 36 (2006), no. 1, 112–126. Special issue of invited papers dedicated to Asher Peres on the occasion of his seventieth birthday. MR 2234897, DOI 10.1007/s10701-005-9008-x
- G. Zauner, Quantendesigns - Grundzüge einer nichtkommutativen Designtheorie, Ph.D. thesis, Universität Wien, 1999.
- K. Zyczkowski and W. Tadej, http://chaos.if.uj.edu.pl/$\sim$karol/hadamard/index.php, 2009.
Bibliographic Information
- Bernhard G. Bodmann
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- MR Author ID: 644711
- Email: bgb@math.uh.edu
- Helen J. Elwood
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- Email: helwood@math.uh.edu
- Received by editor(s): September 21, 2009
- Received by editor(s) in revised form: February 9, 2010
- Published electronically: May 27, 2010
- Additional Notes: This research was partially supported by NSF Grant DMS-0807399 and by NSF Grant DMS-0914021
- Communicated by: Michael T. Lacey
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 4387-4404
- MSC (2010): Primary 42C15, 52C17; Secondary 05B20
- DOI: https://doi.org/10.1090/S0002-9939-2010-10435-5
- MathSciNet review: 2680063