One-parameter families of smooth interval maps: Density of hyperbolicity and robust chaos
HTML articles powered by AMS MathViewer
- by Sebastian van Strien
- Proc. Amer. Math. Soc. 138 (2010), 4443-4446
- DOI: https://doi.org/10.1090/S0002-9939-2010-10446-X
- Published electronically: June 22, 2010
- PDF | Request permission
Abstract:
In this paper we will discuss the notion of robust chaos and show that (i) there are natural one-parameter families of interval maps with robust chaos and (ii) hyperbolicity is dense within generic one-parameter families (and so these families are not robustly chaotic).References
- J.M. Aguirregabiria, Robust chaos with variable Lyapunov exponent in smooth one-dimensional maps, Chaos, Solitons and Fractals 42 (2009), no. 4, 2531–2539.
- M. Andrecut and M.K. Ali, Example of robust chaos in a smooth map, Europhysics Letters 54 (2001), no. 3, 300–305.
- M. Andrecut and M. K. Ali, Robust chaos in smooth unimodal maps, Phys. Rev. E (3) 64 (2001), no. 2, 025203, 3. MR 1849767, DOI 10.1103/PhysRevE.64.025203
- V. I. Arnol′d, Catastrophe theory, 3rd ed., Springer-Verlag, Berlin, 1992. Translated from the Russian by G. S. Wassermann; Based on a translation by R. K. Thomas. MR 1178935, DOI 10.1007/978-3-642-58124-3
- S. Banerjee, J.A. Yorke, and C. Grebogi, Robust chaos, Physical Review Letters 80 (1998), no. 14, 3049–3052.
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Z. Elhadj and J.C. Sprott, On the robustness of chaos in dynamical systems: Theories and applications, Frontiers of Physics in China 3 (2008), no. 2, 195–204.
- O. Kozlovski, W. Shen, and S. van Strien, Rigidity for real polynomials, Ann. of Math. (2) 165 (2007), no. 3, 749–841. MR 2335796, DOI 10.4007/annals.2007.165.749
- O. Kozlovski, W. Shen, and S. van Strien, Density of hyperbolicity in dimension one, Ann. of Math. (2) 166 (2007), no. 1, 145–182. MR 2342693, DOI 10.4007/annals.2007.166.145
- E. Lett, Example of robust chaos in a smooth map, Europhysics Letters 54 (2001), no. 3, 300–305.
- S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5–71. MR 699057, DOI 10.1007/BF02698773
- Lasse Rempe and Sebastian van Strien, Density of hyperbolicity for real transcendental entire functions with real singular values, in preparation, 2010.
- Sebastian van Strien, One-dimensional dynamics in the new millennium, Discr. and Cont. Dyn. Syst. A 27 (2010), no. 2, 557–588.
- Sebastian van Strien and Edson Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc. 17 (2004), no. 4, 749–782. MR 2083467, DOI 10.1090/S0894-0347-04-00463-1
Bibliographic Information
- Sebastian van Strien
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: strien@maths.warwick.ac.uk
- Received by editor(s): December 3, 2009
- Received by editor(s) in revised form: February 15, 2010
- Published electronically: June 22, 2010
- Communicated by: Yingfei Yi
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 138 (2010), 4443-4446
- MSC (2010): Primary 37E05, 37Gxx, 37Dxx
- DOI: https://doi.org/10.1090/S0002-9939-2010-10446-X
- MathSciNet review: 2680068