The threshold function for vanishing of the top homology group of random $d$-complexes
HTML articles powered by AMS MathViewer
- by Dmitry N. Kozlov
- Proc. Amer. Math. Soc. 138 (2010), 4517-4527
- DOI: https://doi.org/10.1090/S0002-9939-2010-10596-8
- Published electronically: July 28, 2010
- PDF | Request permission
Abstract:
For positive integers $n$ and $d$, and the probability function $0\leq p(n)\leq 1$, we let $Y_{n,p,d}$ denote the probability space of all at most $d$-dimensional simplicial complexes on $n$ vertices, which contain the full $(d-1)$-dimensional skeleton, and whose $d$-simplices appear with probability $p(n)$. In this paper we determine the threshold function for vanishing of the top homology group in $Y_{n,p,d}$, for all $d\geq 1$.References
- Noga Alon and Joel H. Spencer, The probabilistic method, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley & Sons], New York, 2000. With an appendix on the life and work of Paul Erdős. MR 1885388, DOI 10.1002/0471722154
- E. Babson, C. Hoffman, M. Kahle, The fundamental group of random $2$-complexes, preprint, arXiv:0711.2704v2
- D. Cohen, M. Farber, T. Kappeler, The homotopical dimension of random $2$-complexes, preprint, arXiv:math/1005.3383v1
- P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 125031
- Michael Farber, Topology of random linkages, Algebr. Geom. Topol. 8 (2008), no. 1, 155–171. MR 2377280, DOI 10.2140/agt.2008.8.155
- Michael Farber and Thomas Kappeler, Betti numbers of random manifolds, Homology Homotopy Appl. 10 (2008), no. 1, 205–222. MR 2386047, DOI 10.4310/HHA.2008.v10.n1.a8
- Matthew Kahle, Topology of random clique complexes, Discrete Math. 309 (2009), no. 6, 1658–1671. MR 2510573, DOI 10.1016/j.disc.2008.02.037
- Matthew Kahle, The neighborhood complex of a random graph, J. Combin. Theory Ser. A 114 (2007), no. 2, 380–387. MR 2293099, DOI 10.1016/j.jcta.2006.05.004
- M. Kahle, Random geometric complexes, preprint, arXiv:math/0910.1649v1
- Dmitry Kozlov, Combinatorial algebraic topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008. MR 2361455, DOI 10.1007/978-3-540-71962-5
- Nathan Linial and Roy Meshulam, Homological connectivity of random 2-complexes, Combinatorica 26 (2006), no. 4, 475–487. MR 2260850, DOI 10.1007/s00493-006-0027-9
- Russell Lyons, Random complexes and $l^2$-Betti numbers, J. Topol. Anal. 1 (2009), no. 2, 153–175. MR 2541759, DOI 10.1142/S1793525309000072
- R. Meshulam and N. Wallach, Homological connectivity of random $k$-dimensional complexes, Random Structures Algorithms 34 (2009), no. 3, 408–417. MR 2504405, DOI 10.1002/rsa.20238
- Nicholas Pippenger and Kristin Schleich, Topological characteristics of random triangulated surfaces, Random Structures Algorithms 28 (2006), no. 3, 247–288. MR 2213112, DOI 10.1002/rsa.20080
Bibliographic Information
- Dmitry N. Kozlov
- Affiliation: Department of Mathematics, University of Bremen, 28334 Bremen, Federal Republic of Germany
- Email: dfk@math.uni-bremen.de
- Received by editor(s): October 20, 2009
- Published electronically: July 28, 2010
- Additional Notes: This research was supported by the University of Bremen as part of AG CALTOP
- Communicated by: Jim Haglund
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 138 (2010), 4517-4527
- MSC (2010): Primary 55U10; Secondary 60B99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10596-8
- MathSciNet review: 2680076