Coexistence in interval effect algebras
HTML articles powered by AMS MathViewer
- by Gejza Jenča
- Proc. Amer. Math. Soc. 139 (2011), 331-344
- DOI: https://doi.org/10.1090/S0002-9939-2010-10554-3
- Published electronically: July 29, 2010
- PDF | Request permission
Abstract:
Motivated by the notion of coexistence of effect-valued observables, we give a characterization of coexistent subsets of interval effect algebras.References
- M. K. Bennett and D. J. Foulis, Interval and scale effect algebras, Adv. in Appl. Math. 19 (1997), no. 2, 200–215. MR 1459498, DOI 10.1006/aama.1997.0535
- Ladislav Beran, Orthomodular lattices, Mathematics and its Applications (East European Series), D. Reidel Publishing Co., Dordrecht, 1985. Algebraic approach. MR 784029, DOI 10.1007/978-94-009-5215-7
- Paul Busch, Pekka J. Lahti, and Peter Mittelstaedt, The quantum theory of measurement, 2nd ed., Lecture Notes in Physics. New Series m: Monographs, vol. 2, Springer-Verlag, Berlin, 1996. MR 1419313
- P. Busch and H-J. Schmidt. Coexistence of qubit effects. Quantum Information Processing, Quantum Information Processing 9:143–169, 2010.
- Paul Busch, Marian Grabowski, and Pekka J. Lahti, Operational quantum physics, Lecture Notes in Physics. New Series m: Monographs, vol. 31, Springer-Verlag, Berlin, 1995. MR 1356220
- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. MR 94302, DOI 10.1090/S0002-9947-1958-0094302-9
- Ferdinand Chovanec and František Kôpka, Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183–197. Quantum structures (Liptovský Ján, 1995). MR 1469294
- Anatolij Dvurečenskij and Sylvia Pulmannová, New trends in quantum structures, Mathematics and its Applications, vol. 516, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000. MR 1861369, DOI 10.1007/978-94-017-2422-7
- D. J. Foulis and M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), no. 10, 1331–1352. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. MR 1304942, DOI 10.1007/BF02283036
- D. J. Foulis and C. H. Randall, Operational statistics. I. Basic concepts, J. Mathematical Phys. 13 (1972), 1667–1675. MR 416417, DOI 10.1063/1.1665890
- Roberto Giuntini and Heinz Greuling, Toward a formal language for unsharp properties, Found. Phys. 19 (1989), no. 7, 931–945. MR 1013913, DOI 10.1007/BF01889307
- Stan Gudder, Coexistence of quantum effects, Rep. Math. Phys. 63 (2009), no. 2, 289–303. MR 2519471, DOI 10.1016/S0034-4877(09)90005-2
- K.-E. Hellwig. Coexistent effects in quantum mechanics. International Journal of Theoretical Physics, 2:147–155, 1969.
- Gejza Jenča, Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems 145 (2004), no. 2, 279–285. MR 2074002, DOI 10.1016/S0165-0114(03)00226-4
- G. Jenča. Compatibility support mappings in effect algebras. Math. Slovaca (to appear). arXiv:math.RA/0910.2825.
- Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
- František Kôpka, $D$-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83–87. Fuzzy sets (Liptovský Mikuláš, 1992). MR 1230466
- František Kôpka and Ferdinand Chovanec, $D$-posets, Math. Slovaca 44 (1994), no. 1, 21–34. MR 1290269
- Karl Kraus, States, effects, and operations, Lecture Notes in Physics, vol. 190, Springer-Verlag, Berlin, 1983. Fundamental notions of quantum theory; Lecture notes edited by A. Böhm, J. D. Dollard and W. H. Wootters. MR 725167, DOI 10.1007/3-540-12732-1
- Pekka Lahti and Sylvia Pulmannová, Coexistent observables and effects in quantum mechanics, Rep. Math. Phys. 39 (1997), no. 3, 339–351. MR 1477898, DOI 10.1016/S0034-4877(97)89752-2
- Pekka Lahti and Sylvia Pulmannová, Coexistence vs. functional coexistence of quantum observables, Rep. Math. Phys. 47 (2001), no. 2, 199–212. MR 1836331, DOI 10.1016/S0034-4877(01)89037-6
- Pekka Lahti, Sylvia Pulmannova, and Kari Ylinen, Coexistent observables and effects in a convexity approach, J. Math. Phys. 39 (1998), no. 12, 6364–6371. MR 1656976, DOI 10.1063/1.532643
- Günther Ludwig, Foundations of quantum mechanics. I, Texts and Monographs in Physics, Springer-Verlag, New York, 1983. Translated from the German by Carl A. Hein. MR 690770, DOI 10.1007/978-3-642-86751-4
- Günther Ludwig, Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien, Z. Physik 181 (1964), 233–260 (German). MR 181244
- Daniele Mundici, Interpretation of AF $C^\ast$-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), no. 1, 15–63. MR 819173, DOI 10.1016/0022-1236(86)90015-7
- Sylvia Pulmannová, Compatibility and decompositions of effects, J. Math. Phys. 43 (2002), no. 5, 2817–2830. MR 1893702, DOI 10.1063/1.1462857
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 174487, DOI 10.1007/BF00531932
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717, DOI 10.1007/978-1-4615-9763-6
- Peter Stano, Daniel Reitzner, and Teiko Heinosaari, Coexistence of qubit effects, Phys. Rev. A (3) 78 (2008), no. 1, 012315, 9. MR 2491108, DOI 10.1103/PhysRevA.78.012315
Bibliographic Information
- Gejza Jenča
- Affiliation: Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, Bratislava 813 68, Slovak Republic
- Email: gejza.jenca@stuba.sk
- Received by editor(s): September 26, 2009
- Received by editor(s) in revised form: March 19, 2010
- Published electronically: July 29, 2010
- Additional Notes: This research is supported by grant VEGA G-1/0080/10 of MŠ SR, Slovakia and by the Slovak Research and Development Agency under contract No. APVV-0071-06.
- Communicated by: Marius Junge
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 331-344
- MSC (2010): Primary 03G12; Secondary 06F20, 81P10
- DOI: https://doi.org/10.1090/S0002-9939-2010-10554-3
- MathSciNet review: 2729095