Two questions on mapping class groups
HTML articles powered by AMS MathViewer
- by Louis Funar
- Proc. Amer. Math. Soc. 139 (2011), 375-382
- DOI: https://doi.org/10.1090/S0002-9939-2010-10555-5
- Published electronically: August 5, 2010
- PDF | Request permission
Abstract:
We show that central extensions of the mapping class group $M_g$ of the closed orientable surface of genus $g$ by $\mathbb {Z}$ are residually finite. Further we give rough estimates of the largest $N=N_g$ such that homomorphisms from $M_g$ to $SU(N)$ have finite image. In particular, homomorphisms of $M_g$ into $SL([\sqrt {g+1}],\mathbb {C})$ have finite image. Both results come from properties of quantum representations of mapping class groups.References
- Jørgen Ellegaard Andersen, Asymptotic faithfulness of the quantum $\textrm {SU}(n)$ representations of the mapping class groups, Ann. of Math. (2) 163 (2006), no. 1, 347–368. MR 2195137, DOI 10.4007/annals.2006.163.347
- M. R. Bridson, Semisimple actions of mapping class groups on CAT$(0)$ spaces, arXiv:0908.0685, “The Geometry of Riemann Surfaces”, London Mathematical Society Lecture Notes, 368, dedicated to Bill Harvey on his 65th birthday, to appear.
- M. R. Bridson, On the dimension of CAT($0$) spaces where mapping class groups act, arXiv:0908.0690.
- Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1152, Hermann & Cie, Paris, 1951 (French). MR 0051242
- Marc Culler and Karen Vogtmann, A group-theoretic criterion for property $\textrm {FA}$, Proc. Amer. Math. Soc. 124 (1996), no. 3, 677–683. MR 1307506, DOI 10.1090/S0002-9939-96-03217-0
- Pierre Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A203–A208 (French, with English summary). MR 507760
- Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 11–55. MR 2264130, DOI 10.1090/pspum/074/2264130
- B. Farb and D. Margalit, A primer of mapping class groups, preprint.
- Benson Farb, Group actions and Helly’s theorem, Adv. Math. 222 (2009), no. 5, 1574–1588. MR 2555905, DOI 10.1016/j.aim.2009.06.004
- Benson Farb, Alexander Lubotzky, and Yair Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), no. 3, 581–597. MR 1813237, DOI 10.1215/S0012-7094-01-10636-4
- Michael H. Freedman, Kevin Walker, and Zhenghan Wang, Quantum $\rm SU(2)$ faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002), 523–539. MR 1943758, DOI 10.2140/gt.2002.6.523
- Louis Funar, Représentations du groupe symplectique et variétés de dimension $3$, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 10, 1067–1072 (French, with English and French summaries). MR 1222974
- Louis Funar, On the TQFT representations of the mapping class groups, Pacific J. Math. 188 (1999), no. 2, 251–274. MR 1684208, DOI 10.2140/pjm.1999.188.251
- Louis Funar, Some abelian invariants of 3-manifolds, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 5, 825–861 (2001). MR 1865997
- Sylvain Gervais, Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3097–3132. MR 1327256, DOI 10.1090/S0002-9947-96-01509-7
- Mustafa Korkmaz and András I. Stipsicz, The second homology groups of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 479–489. MR 1981213, DOI 10.1017/S0305004102006461
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- G. Masbaum and J. D. Roberts, On central extensions of mapping class groups, Math. Ann. 302 (1995), no. 1, 131–150. MR 1329450, DOI 10.1007/BF01444490
- Miles Reid, Undergraduate commutative algebra, London Mathematical Society Student Texts, vol. 29, Cambridge University Press, Cambridge, 1995. MR 1458066, DOI 10.1017/CBO9781139172721
- André Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, Vol. 29, American Mathematical Society, New York, 1946. MR 0023093
Bibliographic Information
- Louis Funar
- Affiliation: Institut Fourier, BP 74, UMR 5582, University of Grenoble I, 38402 Saint-Martin-d’Hères cedex, France
- Email: funar@fourier.ujf-grenoble.fr
- Received by editor(s): October 12, 2009
- Received by editor(s) in revised form: April 2, 2010
- Published electronically: August 5, 2010
- Communicated by: Daniel Ruberman
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 375-382
- MSC (2010): Primary 57M07, 20F36, 20F38, 57N05
- DOI: https://doi.org/10.1090/S0002-9939-2010-10555-5
- MathSciNet review: 2729098