Stolarsky’s conjecture and the sum of digits of polynomial values
HTML articles powered by AMS MathViewer
- by Kevin G. Hare, Shanta Laishram and Thomas Stoll
- Proc. Amer. Math. Soc. 139 (2011), 39-49
- DOI: https://doi.org/10.1090/S0002-9939-2010-10591-9
- Published electronically: August 19, 2010
- PDF | Request permission
Abstract:
Let $s_q(n)$ denote the sum of the digits in the $q$-ary expansion of an integer $n$. In 1978, Stolarsky showed that $\displaystyle { \liminf _{n\to \infty }} \frac {s_2(n^2)}{s_2(n)} = 0$. He conjectured that, just as for $n^2$, this limit infimum should be 0 for higher powers of $n$. We prove and generalize this conjecture showing that for any polynomial $p(x)=a_h x^h+a_{h-1} x^{h-1} + \dots + a_0 \in \mathbb {Z}[x]$ with $h\geq 2$ and $a_h>0$ and any base $q$, \[ \liminf _{n\to \infty } \frac {s_q(p(n))}{s_q(n)}=0.\] For any $\varepsilon > 0$ we give a bound on the minimal $n$ such that the ratio $s_q(p(n))/ s_q(n) < \varepsilon$. Further, we give lower bounds for the number of $n < N$ such that $s_q(p(n))/s_q(n) < \varepsilon$.References
- N. L. Bassily and I. Kátai, Distribution of the values of $q$-additive functions on polynomial sequences, Acta Math. Hungar. 68 (1995), no. 4, 353–361. MR 1333478, DOI 10.1007/BF01874349
- R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/63), 141–147. MR 144877, DOI 10.1007/BF02566968
- Cécile Dartyge and Gérald Tenenbaum, Congruences de sommes de chiffres de valeurs polynomiales, Bull. London Math. Soc. 38 (2006), no. 1, 61–69 (French, with English summary). MR 2201604, DOI 10.1112/S0024609305017789
- Hubert Delange, Sur la fonction sommatoire de la fonction“somme des chiffres”, Enseign. Math. (2) 21 (1975), no. 1, 31–47 (French). MR 379414
- Michael Drmota and Joël Rivat, The sum-of-digits function of squares, J. London Math. Soc. (2) 72 (2005), no. 2, 273–292. MR 2156654, DOI 10.1112/S0024610705006769
- Heini Halberstam and Klaus Friedrich Roth, Sequences, 2nd ed., Springer-Verlag, New York-Berlin, 1983. MR 687978
- K. G. Hare, S. Laishram, T. Stoll, The sum of digits of $n$ and $n^2$, submitted, arxiv.org
- Bernt Lindström, On the binary digits of a power, J. Number Theory 65 (1997), no. 2, 321–324. MR 1462846, DOI 10.1006/jnth.1997.2129
- C. Mauduit, J. Rivat, Sur un probléme de Gelfond: la somme des chiffres des nombres premiers, Annals of Mathematics, to appear.
- Christian Mauduit and Joël Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), no. 1, 107–148 (French). MR 2545827, DOI 10.1007/s11511-009-0040-0
- Giuseppe Melfi, On simultaneous binary expansions of $n$ and $n^2$, J. Number Theory 111 (2005), no. 2, 248–256. MR 2130110, DOI 10.1016/j.jnt.2004.12.009
- Manfred Peter, The summatory function of the sum-of-digits function on polynomial sequences, Acta Arith. 104 (2002), no. 1, 85–96. MR 1913736, DOI 10.4064/aa104-1-4
- Tanguy Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), no. 1, 95–111. MR 2460868, DOI 10.1017/S1446788708000591
- Kenneth B. Stolarsky, The binary digits of a power, Proc. Amer. Math. Soc. 71 (1978), no. 1, 1–5. MR 495823, DOI 10.1090/S0002-9939-1978-0495823-5
Bibliographic Information
- Kevin G. Hare
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
- MR Author ID: 690847
- Email: kghare@math.uwaterloo.ca
- Shanta Laishram
- Affiliation: Department of Mathematics, Indian Institute of Science Education and Research, Bhopal, 462 023, India
- MR Author ID: 742114
- ORCID: 0000-0001-6948-294X
- Email: shanta@isid.ac.in
- Thomas Stoll
- Affiliation: Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France
- Email: stoll@iml.univ-mrs.fr
- Received by editor(s): January 22, 2010
- Published electronically: August 19, 2010
- Additional Notes: The first author was partially supported by NSERC; computational support was provided by a CFI/OIT grant
The second author was partially supported by an APART grant of the Austrian Academy of Sciences - Communicated by: Ken Ono
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 39-49
- MSC (2010): Primary 11B99, 11Y55
- DOI: https://doi.org/10.1090/S0002-9939-2010-10591-9
- MathSciNet review: 2729069