Nondegeneracy of the second bifurcating branches for the Chafee-Infante problem on a planar symmetric domain
HTML articles powered by AMS MathViewer
- by Yasuhito Miyamoto PDF
- Proc. Amer. Math. Soc. 139 (2011), 975-984 Request permission
Abstract:
Let $\Omega$ be a planar domain such that $\Omega$ is symmetric with respect to both the $x$- and $y$-axes and $\Omega$ satisfies certain conditions. Then the second eigenvalue of the Dirichlet Laplacian on $\Omega$, $\nu _2(\Omega )$, is simple, and the corresponding eigenfunction is odd with respect to the $y$-axis. Let $f\in C^3$ be a function such that \[ f’(0)>0,\ f''’(0)<0,\ f(-u)=-f(u)\ \textrm {and}\ \frac {d}{du}\left (\frac {f(u)}{u}\right )<0\ \textrm {for}\ u>0. \] Let $\mathcal {C}$ denote the maximal continua consisting of nontrivial solutions, $\{(\lambda ,u)\}$, to \[ \Delta u+\lambda f(u)=0\ \ \textrm {in}\ \ \Omega ,\qquad u=0\ \ \textrm {on}\ \ \partial \Omega \] and emanating from the second eigenvalue $(\nu _2(\Omega )/f’(0),0)$. We show that, for each $(\lambda ,u)\in \mathcal {C}$, the Morse index of $u$ is one and zero is not an eigenvalue of the linearized problem. We show that $\mathcal {C}$ consists of two unbounded curves, each curve is parametrized by $\lambda$ and the closure $\overline {\mathcal {C}}$ is homeomorphic to $\mathbb {R}$.References
- T. Carleman, Sur les systèmes linéaires aux derivées partielles du premier ordre à deux variables, C. R. Acad. Sci. Paris 197 (1933), 471–474.
- N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37. MR 440205, DOI 10.1080/00036817408839081
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- Manuel del Pino, Jorge García-Melián, and Monica Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3499–3505. MR 1991761, DOI 10.1090/S0002-9939-03-06906-5
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- Marco Holzmann and Hansjörg Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300 (1994), no. 2, 221–241. MR 1299061, DOI 10.1007/BF01450485
- Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449–476. MR 58082, DOI 10.2307/2372496
- Philip Korman, Solution curves for semilinear equations on a ball, Proc. Amer. Math. Soc. 125 (1997), no. 7, 1997–2005. MR 1423311, DOI 10.1090/S0002-9939-97-04119-1
- Yasuhito Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal. 256 (2009), no. 3, 747–776. MR 2484935, DOI 10.1016/j.jfa.2008.11.023
- Yasuhito Miyamoto, Non-existence of a secondary bifurcation point for a semilinear elliptic problem in the presence of symmetry, J. Math. Anal. Appl. 357 (2009), no. 1, 89–97. MR 2526808, DOI 10.1016/j.jmaa.2009.04.005
- Y. Miyamoto, Global branches of sign-changing solutions to a semilinear Dirichlet problem in a disk, preprint.
- Y. Mukai, Bifurcation of solutions to a boundary value problem of a semilinear elliptic equation on a disk (in Japanese), Master Thesis (1997), Graduate School of Mathematical Sciences, University of Tokyo, Japan.
- Rolf Pütter, On the nodal lines of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv. 65 (1990), no. 1, 96–103. MR 1036131, DOI 10.1007/BF02566596
- Chao Liang Shen, Remarks on the second eigenvalue of a symmetric simply connected plane region, SIAM J. Math. Anal. 19 (1988), no. 1, 167–171. MR 924553, DOI 10.1137/0519013
- José M. Vegas, Bifurcations caused by perturbing the domain in an elliptic equation, J. Differential Equations 48 (1983), no. 2, 189–226. MR 696867, DOI 10.1016/0022-0396(83)90049-9
Additional Information
- Yasuhito Miyamoto
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Email: miyamoto@math.titech.ac.jp
- Received by editor(s): March 23, 2010
- Published electronically: July 30, 2010
- Additional Notes: This work was partially supported by Grant-in-Aid for Young Scientists (B) (Subject No. 21740116).
- Communicated by: Matthew J. Gursky
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 975-984
- MSC (2010): Primary 35B32, 35P15; Secondary 35J61, 35J15
- DOI: https://doi.org/10.1090/S0002-9939-2010-10616-0
- MathSciNet review: 2745649