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UNIQUENESS OF TRAVELING WAVES

FOR NONLOCAL LATTICE EQUATIONS

JIAN FANG, JUNJIE WEI, AND XIAO-QIANG ZHAO

(Communicated by Yingfei Yi)

Abstract. We establish the uniqueness (up to translation) of traveling waves
for a nonlocal lattice equation with time delay. Our approach is based on exact
a priori asymptotics of the wave profiles. This we accomplish by developing
a structure theorem of entire solutions to a class of linear integro-differential
equations.

1. Introduction

Chen and Guo [2] obtained the existence of traveling waves of the following local
lattice system

(1.1)
dwj

dt
= g(wj+1) + g(wj−1)− 2g(wj) + f(wj), j ∈ Z,

by the method of upper-lower solutions coupled with the technique presented in
Zinner, Harris and Hudson [11]. They used solutions of an initial boundary value
problem to approximate traveling waves for (1.1) and established the uniqueness
(up to translation) by showing monotonicity of wave profiles and analyzing the
asymptotic behavior of wave profiles. Ma and Zou [6] then extended this idea to a
local and time-delayed lattice system

(1.2)
dwj(t)

dt
= D[wj+1(t) + wj−1(t)− 2wj(t)]− dwj(t) + b(wj(t− r)), j ∈ Z,

where b(w) is monotone. Weng, Huang and Wu [9] derived the following nonlocal
time-delayed lattice system to describe the mature population of a single species in
a patch environment,
(1.3)
dwj(t)

dt
= D[wj+1(t)+wj−1(t)− 2wj(t)]− dwj(t)+

∑

k∈Z

β(j− k)b(wk(t− r)), j ∈ Z,

where β(k) ≥ 0 with
∑

k∈Z
β(k) = 1, b(0) = 0, b(w)−dw = 0 has a positive solution

w∗ such that b(w) − dw > 0, ∀w ∈ (0, w∗). They also obtained the existence of
traveling waves in the case where b(u) is monotone in u ∈ [0, w∗]. The spreading
speed and its coincidence with the minimal wave speed of traveling waves were
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established in [4] in the case where b is non-monotone. It seems very difficult to
extend Chen and Guo’s idea for the uniqueness of traveling waves to this nonlocal
case.

The purpose of the current paper is to address the uniqueness of traveling wave
solutions to nonlocal lattice equations. Our developed method also applies to more
general nonlocal lattice systems such as
(1.4)
dwj(t)

dt
=

∑

k∈Z

Dk[wj+k(t)−wj(t)]−g(wj(t))+
∑

k∈Z

β(j−k)

∫ 0

−r

b(wk(t+θ))dη(θ), j ∈ Z.

Here we choose to consider (1.3) just for the sake of simplicity.
Throughout this paper, a traveling wave with speed c always refers to a pair

(u, c), where u ∈ C(R,R+) is a non-trivial and bounded solution of (1.3) having
the form wj(t) = u(j+ct). We call u the wave profile. Substituting wj(t) = u(j+ct)
into (1.3), we get the wave profile equation

(1.5) cu′(x) = D[u(x+ 1) + u(x− 1)− 2u(x)]− du(x) +
∑

k∈Z

β(k)b(u(x− k− cr)).

Diekman and Kapper [3] studied the asymptotic behavior and the uniqueness
of solutions for the integral equation u(x) =

∫
R
f(u(y))k(x − y)dy. They em-

ployed the powerful Tauberian theorem when solutions are monotone (see also
[1]). Further, they obtained a beautiful estimate of asymptotic behavior of non-
monotone solutions with the help of the solution structure of the linear equation
u(x) =

∫
R
f ′(0)u(y)k(x − y)dy. These earlier works ([2, 3, 1]) suggest that the

asymptotic behavior of wave profiles when x → −∞ plays an important role in the
study of uniqueness of traveling waves.

In order to obtain the exact asymptotic behavior of wave profiles, we explore
a structure theorem of entire solutions to linear integro-differential equations in
Section 2. This theorem is also of interest on its own. Because it is difficult
(sometimes impossible; see, e.g., [5]) to prove the monotonicity of wave profiles for
non-monotone systems, we directly study the asymptotic behavior of wave profiles
without assuming their monotonicity by three steps. First we prove that every wave
profile decays exponentially. Next we decompose each wave profile into two parts:
one part decays rapidly, and the other is a solution of the linearized equation of
the wave profile equation (1.5) at zero and dominates the asymptotic behavior. By
applying the solution structure theorem, we get the expression of the dominating
part. Finally, by the distribution of eigenvalues of the corresponding characteristic
equation we obtain the exact asymptotic behavior. Consequently, we obtain the
uniqueness (up to translation) of traveling waves.

2. A linear integro-differential equation

In this section, we use complex analysis to study the structure of entire solutions
to the following linear differential-integral equation,

(2.1)

m∑

k=0

∫

R

f (k)(x+ y)dμk(y) = 0, x ∈ R,

where m ≥ 1 is an integer, f (k)(z) is the kth order derivative of f(z) and each
μk is a σ-finite real-value measure on R. Note that the linearized wave profile
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equations at zero of the lattice equation (1.3), of the integral equation u(t, z) =∫ ∞
0

∫
R
G(u(t − s, z − y), s, y)dyds and of the nonlocal reaction-diffusion equation

∂u
∂t (t, z) = D ∂2u

∂z2 (t, z)−g(u(t, z))+
∫ ∞
0

∫
R
G(u(t−s, z−y))J(s, y)dyds are all in form

(2.1). Further, (2.1) includes the delay differential equation u̇(t) =
∫ 0

−r
u(t+θ)dη(θ).

Of interest, we consider entire solutions of (2.1) with the property that there exists
γ > 0 such that f (k)(x) = O(eγ|x|), ∀0 ≤ k ≤ m− 1.

Define

hk(λ) :=

∫

R

eλydμk(y) and K(λ) :=
m∑

k=0

λkhk(λ).

We call K(λ) = 0 the characteristic equation and its solution the eigenvalue.
We make the following assumptions:

(A1) For each k, there exists ρk > 0 such that |hk(λ)| < ∞ for |Reλ| < ρk.
(A2) There exist m different eigenvalues in the strip |Reλ| < γ with γ < ρ,

where ρ := min{ρk : 0 ≤ k ≤ m}.
Assumption (A1) ensures that K(λ) is analytic for |Reλ| < ρ. Assumption (A2)

makes it possible to transfer a solution f(x) to another solution f̂(x) such that

f̂(0) = f̂ ′(0) = · · · = f̂ (m−1)(0) = 0, which will be shown in Lemma 2.1.

Theorem 2.1. Assume (A1) and (A2) hold. Let f(x) be a solution of (2.1) and
f (k)(x) = O(eγ|x|), ∀0 ≤ k ≤ m− 1. Then f has the following expression

f(x) =
∑

l

kl∑

p=1

Ml,px
p−1e−iwlx,

where −iwl runs through all zeros of K(λ) in the strip |Reλ| ≤ γ, Ml,p are constants
and kl is the order of the multiplicity of the eigenvalue −iwl.

To prove this theorem, we need a series of lemmas.
In what follows, we always assume that w = u+ iv ∈ C with u, v ∈ R. Define

F+(w) :=
1√
2π

∫ ∞

0

f(x)eiwxdx =
1√
2π

∫ ∞

0

f(x)e−vxeiuxdx,(2.2)

F−(w) :=
1√
2π

∫ 0

−∞
f(x)eiwxdx =

1√
2π

∫ 0

−∞
f(x)e−vxeiuxdx.(2.3)

Note that F+(w) is well-defined for v > γ and F−(w) is well-defined for v < −γ.
The formula reciprocal to (2.2) is

1√
2π

∫ ∞

−∞
F+(u+ iv)e−i(u+iv)xdu =

{
f(x), x > 0

0, x < 0.

There is a similar formula involving F− (see, e.g., [8]). Adding, we may write

(2.4) f(x) =
1√
2π

∫ ia+∞

ia−∞
F+(w)e

−iwxdw +
1√
2π

∫ ib+∞

ib−∞
F−(w)e

−iwxdw

for any a > γ and b < −γ. In particular, we choose a ∈ (γ, ρ) and b ∈ (−ρ,−γ).

Lemma 2.1. Assume (A2) holds. If f(x) is solution with f(x) = O(eγ|x|) as

|x| → ∞, then there exists another solution f̂(x) such that f̂(x) = O(eγ|x|) as

|x| → ∞ and f̂(0) = f̂ ′(0) = · · · = f̂ (m−1)(0) = 0.
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Proof. Let λ1, · · ·, λm be m different eigenvalues in the strip |Reλ| < γ. If f(x)

is a solution of (2.1), then so is f̂(x) := f(x) −
∑m

l=1 dle
λlx for any dl ∈ C. We

claim that there exists dl such that f̂(0) = f̂ ′(0) = · · · = f̂ (m−1)(0) = 0. Indeed,

note that f̂ (k)(0) = f (k)(0) −
∑m

l=1 λ
k
l dl. It then suffices to prove that the linear

system Bx = f0 has a solution, where f0 = (f(0), f ′(0), · · ·, f (m−1)(0))T and
B = (bij)m×m with bij = λi−1

j . Obviously, detB is a Vandermonde determinant.
This, together with the fact that λl are different, implies the existence of dl. Clearly,

f̂(x) = O(eγ|x|) as |x| → ∞. �

By the above lemma, we may assume, without loss of generality, that f(0) =
f ′(0) = · · · = f (m−1)(0) = 0. Note that f (k)(x) = O(eγ|x|) when |x| → +∞. It
then follows from the fact that f(0) = f ′(0) = · · · = f (m−1)(0) = 0 that for any
0 ≤ k ≤ m − 1,

∫ ∞
0

f (k)(x)eiwxdx = (−iw)k
∫ ∞
0

f(x)eiwxdx = (−iw)kF+(w) and

similarly
∫ 0

−∞ f (k)(x)eiwxdx = (−iw)kF−(w). And hence,

(2.5)

f (k)(x) =
1√
2π

∫ ia+∞

ia−∞
(−iw)kF+(w)e

−iwxdw+
1√
2π

∫ ib+∞

ib−∞
(−iw)kF−(w)e

−iwxdw.

Besides, for any ξ ∈ R,
(2.6)

f(x+ ξ) =
1√
2π

∫ ia+∞

ia−∞
e−iwξF+(w)e

−iwxdw +
1√
2π

∫ ib+∞

ib−∞
e−iwξF−(w)e

−iwxdw.

Lemma 2.2. For each k and x, there holds
(2.7)∫

R

dμk(y)

∫ ia+∞

ia−∞
wkF+(w)e

−iw(x+y)dw =

∫ ia+∞

ia−∞
dw

∫

R

wkF+(w)e
−iw(x+y)dμk(y)

and
(2.8)∫

R

dμk(y)

∫ ib+∞

ib−∞
wkF−(w)e

−iw(x+y)dw =

∫ ib+∞

ib−∞
dw

∫

R

wkF−(w)e
−iw(x+y)dμk(y).

Proof. We only prove (2.7) since the proof of (2.8) is similar. By Fubini’s theorem,
it suffices to prove

(2.9) F̂+(k, x; y) :=

∫

R

∣∣∣(u+ ia)kF+(u+ ia)e−i(u+ia)(x+y)
∣∣∣ du < ∞

and

(2.10)

∫

R

F̂+(k, x; y)dμk(y) < ∞.

To this end, we first prove the following claim.

Claim. For any n ∈ N,
∣∣∫ ∞

0
f(x)e−axeiuxdx

∣∣ = o(|u|−n), as |u| → ∞.

Because xnf(x)e−ax, ∀n ∈ N, is in L1([0,∞)), we have lim|u|→∞[
∫ ∞
0

xnf(x)e−ax

×eiuxdx] = 0 (see, e.g., [8, Theorem 1]). It then follows by l’Hospital’s rule that

lim
|u|→∞

∫ ∞
0

f(x)e−axeiuxdx

un
= lim

|u|→∞

∫ ∞
0

(ix)nf(x)e−axeiuxdx

n!
= 0.
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By this claim, we then see that

(2.11)

∫

R

|(u+ ia)kF+(u+ ia)|du =

∫

R

|u+ ia|k
∣∣∣∣
∫ ∞

0

f(x)e−axe−iuxdx

∣∣∣∣ du < ∞,

and consequently, (2.9) holds. Note that
∫

R

F̂+(k, x; y)dμk(y) ≤ eax
∫

R

|(u+ ia)kF+(u+ ia)|du
∫

R

eaydμk(y) < ∞.

Again, (2.11), together with a ∈ (γ, ρ), implies (2.10). �

Lemma 2.3 ([8, Theorem 141]). Let φ(w) be regular in the strip a1 ≤ v ≤ a2, and
let φ(u + iv) be L1(R) (or L2(R)) and tend to 0 as u → ±∞, for v in the above
interval. Let ψ(w) have the similar properties in b1 ≤ v ≤ b2, where b2 < a1. Let

∫ ia+∞

ia−∞
φ(w)e−iwxdw +

∫ ib+∞

ib−∞
ψ(w)e−iwxdw = 0

for all x, where a1 < a < a2, b1 < b < b2. Then φ and ψ are regular for b1 < v < a2,
their sum is 0 in this strip, and they tend to 0, as u → ±∞, uniformly in any
interior strip.

Now we are ready to prove Theorem 2.1.

Proof. We use similar arguments as in the proof of [8, Theorem 146]. Substituting
the expression of f in (2.4) into (2.1) and using identities (2.5)-(2.8) we obtain

(2.12) 0 =

∫ ia+∞

ia−∞
K(−iw)F+(w)e

−iwxdw +

∫ ib+∞

ib−∞
K(−iw)F−(w)e

−iwxdw.

By the definition of ρ, we see that K(−iw)F+(w) is regular for v ∈ (γ, ρ). Note
that |K(−iw)| = O(|u|m) as |u| → ∞. It then follows from the claim in the proof of
Lemma 2.2 that F+(w) = o(|u|−n), ∀n > 0 as |u| → ∞, and from inequality (2.11)
that K(−iw)F+(w) is in L1(R) and tends to 0 as |u| → ∞ for v ∈ (γ, ρ). So does
K(−iw)F−(w) for v ∈ (−ρ,−γ). Then, by Lemma 2.3, we obtain

(2.13) K(−iw)F+(w) = χ(w), K(−iw)F−(w) = −χ(w),

where χ(w) is regular for v ∈ (−ρ, ρ) and χ(w) → 0 as |u| → ∞ uniformly in any
interior strip. Hence, F+(w) and F−(w) are regular in this strip except possibly for
poles at the zeros of K(−iw). Combining (2.4) and (2.13), we can write

(2.14) f(x) =
1√
2π

∫ ia+∞

ia−∞

χ(w)

K(−iw)
e−iwxdw − 1√

2π

∫ ib+∞

ib−∞

χ(w)

K(−iw)
e−iwxdw,

which is the sum of the residues at poles in the strip b < Reλ < a. Since a ∈ (γ, ρ)
and b ∈ (−ρ,−γ) are arbitrary, we know that the right hand side of equation (2.14)
is also the sum of the residues at poles in the strip |Reλ| ≤ γ. From the fact that
χ(w)

K(−iw) = F+(w) → 0 as |u| → ∞ and the calculation of the right hand side of

(2.14) by the residue theorem (see, e.g., [7, Theorem 13.13]), we see that f(x) is of
the form given in the theorem. �
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3. Uniqueness of traveling waves

In this section, we first analyze the characteristic equation, then reduce the
uniqueness problem to the study of asymptotic behavior under a Lipschitz condi-
tion, and finally obtain the exact asymptotic behavior with the help of Theorem 2.1.

Assume that the function b(u) is differentiable at u = 0. Define

Δ(c, λ) := cλ−D(e−λ + eλ − 2) + d− b′(0)
∑

k∈Z

β(k)e−λ(k+cr),

where c is regarded as a parameter. We call Δ(c, λ) = 0 the characteristic equation
and its solutions eigenvalues. We impose the following assumptions on β(k).

(K) β(k) = β(−k) ≥ 0, ∀k ∈ Z,
∑

k∈Z
β(k) = 1, and there exists λ� > 0 such

that
∑

k∈Z
β(k)e−λk is convergent when λ ∈ [0, λ�) and limλ↑λ�

∑
k∈Z

[β(k)

×e−λk] = +∞.

The following lemma on the characteristic equation is quite useful.

Lemma 3.1. Assume that b′(0) > d and the assumption (K) holds. Then Δ(c, λ)
has the following properties:

(i) The system Δ(c, λ) = 0, ∂Δ
∂λ (c, λ) = 0 admits a unique positive solution

(c∗, λ∗).
(ii) For each c > c∗, there are exactly two positive eigenvalues λi = λi(c), i =

1, 2 with λ1 < λ2 < λ� and Δ(c, λ) > 0 for λ ∈ (λ1, λ2).
(iii) For each c 	= 0, there are only finitely many eigenvalues in any vertical

strip |Reλ| ≤ λ� < λ�.
(iv) For each c 	= 0, there exists δ > 0 such that there are no eigenvalues in the

strip λ1 − δ ≤ Reλ ≤ λ1 + δ other than λ1.

Proof. By direct computations, statements (i)-(ii) can be easily observed. To prove
statement (iii), we first show that all eigenvalues in any vertical strip have a uni-
form bound. Assume, for the sake of contradiction, that {λj}∞j=1 are eigenvalues
with |λj | → ∞ as j → ∞. Substituting λj := uj + ivj into Δ(c, λj) = 0 and sep-
arating the real and imaginary parts, we obtain cvj −D[euj sin vj − e−uj sin vj ] +

b′(0)
∑

k∈Z
β(k)e−uj(k+cr) sin vj(k + cr) = 0. If {uj}∞j=1 is bounded, the left hand

side of the above equality goes to infinity as |vj | → ∞ because c 	= 0. This is a
contradiction. Since Δ(c, λ) is analytic in the strip |Reλ| ≤ λ�, the eigenvalues in
this strip are isolated. So there are only finitely many eigenvalues in this strip.

Now we show statement (iv). By (iii), we see that there exists δ > 0 such that
there are no eigenvalues in the strip λ1 − δ < Reλ < λ1 + δ other than those with
Reλ = λ1. Assume that λ = λ1+ iv is an eigenvalue. Then separating the real and
imaginary parts of Δ(c, λ) = 0 yields
(3.1){
cλ1−D[eλ1 cos v+e−λ1 cos v − 2]+d−b′(0)

∑
k∈Z

β(k)e−λ1(k+cr) cos v(k + cr)=0,

cv −D[eλ1 sin v − e−λ1 sin v] + b′(0)
∑

k∈Z
β(k)e−λ1(k+cr) sin v(k + cr) = 0.

Since Δ(c, λ1) = 0, we know from the first equation of (3.1) that

D(eλ1 + e−λ1)(1− cos v) + b′(0)
∑

k∈Z

β(k)e−λ1(k+cr)(1− cos v(k + cr)) = 0,
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which implies cos v = 1 and cos v(k+cr) = 1 for those k such that β(k) 	= 0. Hence,
sin v = 0 and sin v(k + cr) = 0 for those k such that β(k) 	= 0. Finally, from the
second equation of (3.1), we have v = 0 because c 	= 0. �

In order to reduce the uniqueness problem to the study of asymptotic behavior,
we impose the Lipschitz condition (L) on the function b.

(L) For any u,w ≥ 0, |b(u)− b(w)| ≤ b′(0)|u− w|.
Since there is no traveling wave connecting zero with speed c < c∗ (see [4, Theo-
rem 3.2(i)]), we always assume that wave speed c is greater than c∗.

Lemma 3.2. Let (L) hold. Assume that (u1, c) and (u2, c) are two traveling waves
of (1.3). If

lim
x→−∞

u1(x)e
−λ1x = θ1 and lim

x→−∞
u2(x)e

−λ1x = θ2

for some positive numbers θ1 and θ2, then u1 is a translation of u2; more precisely,
u1(x) = u2(x+ x̄), where x̄ = 1

λ1
ln θ1

θ2
.

Proof. Let v(x)=[u1(x)−u2(x+x̄)]e−λ1x. Then v(±∞)=0, and hence, maxx∈R v(x)
and minx∈R v(x) exist. Without loss of generality, we assume maxx∈R v(x) ≥
|minx∈R v(x)| (otherwise, we may consider v(x) = [u2(x + x̄) − u1(x)]e

−λ1x). So
there exists x0 ∈ R such that v(x0) = maxx∈R v(x) ≥ 0 and v′(x0) = 0. We
claim that v(x0 ± 1) = v(x0). Assume, for the sake of contradiction, that either
v(x0 + 1) < v(x0) or v(x0 − 1) < v(x0). It then follows from (1.5) and (L) that

0 = cv′(x0) = −cλ1v(x0) +D[v(x0 + 1)eλ1 + v(x0 − 1)e−λ1 − 2v(x0)]− dv(x0)

+
∑

k∈Z

β(k)[b(u1(x0 − k − cr))− b(u2(x0 + x̄− k − cr))]e−λ1x0

≤ −cλ1v(x0) +D[v(x0 + 1)eλ1 + v(x0 − 1)e−λ1 − 2v(x0)]− dv(x0)

+
∑

k∈Z

β(k)b′(0)|v(x0 − k − cr)|e−λ1(k+cr)

< v(x0)

(
−cλ1 +D[eλ1 + e−λ1 − 2]− d+ b′(0)

∑

k∈Z

β(k)e−λ1(k+cr)

)

= −v(x0)Δ(c, λ1) = 0,

which is a contradiction. Repeating the above argument, we further obtain
v(x0 ± n) = v(x0), ∀n ∈ Z. This implies v(x0) = 0 since v(±∞) = 0. �

In order to obtain the exact asymptotic decay rate of wave profiles as x → −∞,
we impose the following condition on b:

(H) The function b is continuous from R+ to R+ with b′(0) > d, and there exist
a > 0, δ > 0 and σ > 1 such that b(w) ≥ b′(0)w − awσ, ∀w ∈ [0, δ].

It is easy to see that the assumption (H) implies the following two statements:

(S1) For each w̄ > 0, there exist ā > 0 and σ > 1 such that b(w) ≥ b′(0)w −
āwσ, ∀w ∈ [0, w̄], where ā := max{a, δ−σ maxw∈[δ,w̄] b

′(0)w − b(w)}.
(S2) For any ε > 0, there exists δ̄ > 0 such that b(w) ≥ (1− ε)b′(0)w, ∀w ∈ [0, δ̄].

In what follows, we concentrate on the asymptotic behavior of wave profiles and
always assume that (K) and (H) hold. First, we show that wave profiles decay
exponentially as x → −∞.
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Lemma 3.3. Suppose (u, c) is a traveling wave of (1.3) with u(−∞) = 0. Then
there exists γ = γ(c) > 0 such that u(x) = O(e−γx) as x → −∞.

Proof. Since b′(0) > d and
∑

k∈Z
β(k) = 1, we may choose ε0 > 0 and N > 0 such

that A := (1− ε0)b
′(0)

∑
|k|≤N β(k)− d > 0. By (S2), we see that for such ε0, there

exists δ0 > 0 such that b(u) ≥ (1 − ε0)b
′(0)u, ∀u ∈ [0, δ0]. Since u(−∞) = 0, we

may find M > 0 such that u(x) ≤ δ0, ∀x ≤ −M . Define q(u)(x) := u(x+1)+u(x−
1) − 2u(x). Then, integrating equation (1.5) from y to x with x ≤ −M − N + cr
gives

c[u(x)− u(y)]

= D

∫ x

y

q(u)(ξ)dξ − d

∫ x

y

u(ξ)dξ +
∑

k∈Z

β(k)

∫ x

y

b(u(ξ − k − cr))dξ

≥ D

∫ x

y

q(u)(ξ)dξ − d

∫ x

y

u(ξ)dξ + b′(0)(1− ε0)
∑

|k|≤N

β(k)

∫ x

y

u(ξ − k − cr)dξ

= D

∫ x

y

q(u)(ξ)dξ + b′(0)(1− ε0)
∑

|k|≤N

β(k)

∫ x

y

[u(ξ − k − cr)− u(ξ)]dξ

+A

∫ x

y

u(ξ)dξ.(3.2)

Since
∫ x

y
q(u)(ξ)dξ =

∫ x+1

x
u(ξ)dξ −

∫ x

x−1
u(ξ)dξ −

∫ y+1

y
u(ξ)dξ +

∫ y

y−1
u(ξ)dξ and

∫ x

y
[u(ξ − k − cr) − u(ξ)]dξ = −(k + cr)

∫ 1

0
[u(x − t(k + cr)) − u(y − t(k + cr))]dt,

letting y → −∞ in (3.2), we have

A

∫ x

−∞
u(ξ)dξ ≤ cu(x)−D

∫ x+1

x

u(ξ)dξ +D

∫ x

x−1

u(ξ)dξ

+b′(0)(1− ε0)
∑

|k|≤N

|k + cr|β(k)
∫ 1

0

u(x− t(k + cr))dt.(3.3)

Since
∑

k∈Z
β(k)eλk is convergent for λ ∈ (−λ�, λ�), we know that Δ(c, λ) is in-

finitely often differentiable for λ in some interval [0, δ] with δ > 0. Thus, it

is easy to verify that d2

dλ2Δ(c, λ)
∣∣∣
λ=0

= −2D + b′(0)
∑

k∈Z
(k + cr)2β(k) < +∞.

Note that |k + cr| ≤ (k + cr)2 when |k| is sufficiently large. It then follows that∫ x

−∞ u(ξ)dξ < +∞. Letting v(x) :=
∫ x

−∞ u(ξ)dξ and integrating (3.3) from −∞ to
x, we obtain

A

∫ x

−∞
v(ξ)dξ ≤ cv(x)−D

∫ x+1

x

v(ξ)dξ +D

∫ x

x−1

v(ξ)dξ

+b′(0)(1− ε0)
∑

|k|≤N

|k + cr|β(k)
∫ 1

0

v(x− t(k + cr)dt

≤ Kv(x+N1)(3.4)

for some K > 0 and N1 > 0 since v(x) is increasing. Choose r0 > 0 such that
μ := K/r0 < 1. Then for x ≤ M −N + cr, we have

(3.5) v(x− r0) ≤
1

r0

∫ x

x−r0

v(ξ)dξ ≤ 1

r0

∫ x

−∞
v(ξ)dξ ≤ μv(x+N1).
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Define h(x) = v(x)e−γx, where γ = 1
N1+r0

ln 1
μ . Then we have

h(x− r0) = v(x− r0)e
−γ(x−r0) ≤ μeγ(N1+r0)h(x+N1) = h(x+N1),(3.6)

which shows h is bounded. Consequently, v(x) = O(eγx) when x → −∞. Now we
claim u(x) = O(eγx) when x → −∞. Indeed, integrating the wave profile equation
(1.5) from −∞ to x and using the assumption that b(u) ≤ b′(0)u, ∀u > 0, we arrive
at

cu(x) = D[v(x+ 1) + v(x− 1)− 2v(x)]− dv(x) +

∫ 0

−∞

∑

k∈Z

β(k)b(u(ξ − k − cr))dξ

≤ D[v(x+ 1) + v(x− 1)− 2v(x)]− dv(x) +
∑

k∈Z

b′(0)β(k)v(x− k − cr).

(3.7)

Multiplying both sides of (3.7) by e−γx gives

cu(x)e−γx ≤ D[h(x+ 1)eγ + h(x− 1)e−γ − 2h(x)]− dh(x)

+
∑

k∈Z

b′(0)β(k)e−γ(k+cr)h(x− k − cr).(3.8)

Since the function h is bounded on R and the series
∑

k∈Z
β(k)e−γk is convergent,

we see from inequality (3.8) that u(x)e−γx is bounded on R. �

Let γ be defined as in Lemma 3.3. In what follows, the property established in
Lemma 3.3 will be used once γ appears. For each λ satisfying 0 < λ < γ, we can
define the two-side Laplace transform

L(λ) :=
∫

R

e−λxu(x)dx,

for which we have the following observation.

Lemma 3.4. L(λ) is analytic for λ ∈ (0, λ1) and has a singularity at λ = λ1.

Proof. Rewrite the wave profile equation (1.5) as

(3.9) cu′(x)−Dq(u)(x) + du(x)− b′(0)
∑

k∈Z

β(k)u(x− k − cr) = R(u)(x),

where q(u)(x) = u(x+1)+u(x− 1)− 2u(x) and R(u)(x) =
∑

k∈Z
β(k)[b(u(x− k−

cr))− b′(0)u(x− k − cr)]. Under Laplace transforms, (3.9) becomes

(3.10) Δ(c, λ)L(λ) =
∫

R

e−λxR(u)(x)dx.

We first claim that if the left hand side of (3.10) is analytic for λ ∈ (0, η) with
η < λ�, then there exists η1 > 0 such that the right hand side of (3.10) is ana-
lytic for λ ∈ (0, η + η1). Indeed, it easily follows from (S1) that 0 ≥ R(u)(x) ≥
−ā

∑
k∈Z

β(k)uσ(x − k − cr). Choose η1 > 0 such that η1

σ−1 < γ and η + η1 < λ�.

Then for any λ ∈ (0, η + η1), L(λ − η1) < +∞, a1 :=
∑

k∈Z
β(k)e−λ(k+cr) < +∞
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and supx∈R
u(x)e−

η1
σ−1x < +∞, and hence,

∣∣∣∣
∫

R

e−λxR(u)(x)dx

∣∣∣∣ ≤ ā

∫

R

e−λx
∑

k∈Z

β(k)uσ(x− k − cr)dx

= ā
∑

k∈Z

β(k)e−λ(k+cr)

∫

R

e−λxuσ(x)dx

= āa1

∫

R

e−(λ−η1)xu(x)
(
u(x)e−

η1
σ−1x

)σ−1

dx

≤ āa1L(λ− η1)

(
sup
x∈R

u(x)e−
η1

σ−1x

)σ−1

< +∞.

Note that L(λ) has a singularity at λ = λ1. Indeed, the left hand side of (3.10)
is zero at λ = λ1 if L(λ1) < +∞, and so is the right hand side. However, the right
hand side is negative unless u ≡ 0. Thus, L(λ1) = +∞. Now we use a property
of Laplace transforms (see page 58 in [10]). Since u is positive, there exists a real
number B > 0 such that L(λ) is analytic for λ ∈ (0, B) and has a singularity at
λ = B. Next we show B = λ1. First, B ≤ λ1; otherwise, taking λ = λ1 in (3.10), we
know u ≡ 0, a contradiction. Since the abscissa of convergence of L(λ) is different
from that of the right hand side of (3.10), we see that B must be the smallest
positive root of the characteristic equation Δ(c, λ) = 0, and hence B = λ1. �

The lemma above shows that wave profiles decay faster than eλx for each λ <
λ1 but not faster than eλ1x. We further prove that the wave profiles decay as
fast as eλ1x. To this end, we first establish the following lemma with the help of
Theorem 2.1.

Lemma 3.5. Let (u, c) be a traveling wave of (1.3) with u(−∞) = 0. Then for
each η sufficiently close to λ1 from the right, there exists a nonpositive continuous
and bounded function ψ on R such that

(3.11) u(x) =

nη∑

l=1

kl∑

p=1

Ml,px
p−1e−iwlx + ψ(x)eηx,

where −iwl are eigenvalues in the strip |Reλ| ≤ η, nη < ∞ is the number of the
eigenvalues in this strip, the Ml,p ∈ C are constants and kl is the order of the
multiplicity of the eigenvalue −iwl.

Proof. Let γ be defined as in Lemma 3.3. Choose σ, ā and ε > 0 so that (S1), (S2)
hold, λ1 + γε < λ2, 1 + ε < σ and there is no eigenvalue in the strip λ1 − γε <
Reλ < λ1+γε other than λ1 (see Lemma 3.1(iv)). Let η ∈ (λ1, λ1+γε). Since u is
positive and bounded, there exists M1 > 0 such that uσ(x) ≤ M1u

1+ε(x), ∀x ∈ R.
Therefore, the remainder R(u)(x) in (3.9) has the following property:

(3.12) 0 ≥ R(u)(x) ≥ −ā
∑

k∈Z

β(k)uσ(x−k−cr) ≥ −āM1

∑

k∈Z

β(k)u1+ε(x−k−cr).

Define I : (−λ�, λ�)× C(R,R) → C(R,R) by

I(λ, u)(y) = D[u(y + 1)eλ + u(y − 1)e−λ] + b′(0)
∑

k∈Z

β(k)e−λ(k+cr)u(y − k − cr).
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Obviously, I(0, u)(y) = eλyI(λ, ue−λ·), ∀λ and u. Then we can rewrite (3.9) as the
following integral equation by using the variation of constant formula:

u(x) = lim
z→−∞

u(z)e−
d+2D

c (x−z) +
1

c

∫ x

−∞
e−

d+2D
c (x−y)[I(0, u)(y) +R(u)(y)]dy

=
1

c

∫ 0

−∞
e

d+2D
c y[eη(x+y)I(η, ue−η·)(x+ y) +R(u)(x+ y)]dy.(3.13)

Multiplying by e−ηx on both sides of (3.13), we obtain

u(x)e−ηx =
1

c
e−ηx

∫ 0

−∞
e

d+2D
c yI(0, u)(x+ y)dy

+
1

c
e−ηx

∫ 0

−∞
e

d+2D
c yR(u)(x+ y)dy

=
1

c

∫ 0

−∞
e

d+2D+cη
c yI(η, ue−η·)(x+ y)dy

+
1

c
e−ηx

∫ 0

−∞
e

d+2D
c yR(u)(x+ y)dy

Consider the iterative scheme ψ(0)(x) := 1
c e

−ηx
∫ 0

−∞ e
d+2D

c yR(u)(x+ y)dy and

ψ(n)(x) :=
1

c

∫ 0

−∞
e

d+2D+cη
c yI(η, ψ(n−1))(x+ y)dy + ψ(0)(x), n ≥ 1.

From inequality (3.12), we know that

0 ≥ ψ(0)(x)

≥ − āM1

c
e−ηx

∑

k∈Z

β(k)

∫ 0

−∞
e

d+2D
c yu1+ε(x+ y − k − cr)dy

= − āM1

c

∑

k∈Z

β(k)e−η(k+cr)

∫ 0

−∞
e

d+2D+cη
c yu(x+ y − k − cr)e−(η−γε)(x+y−k−cr)

×
{
u(x+ y − k − cr)e−γ(x+y−k−cr)

}ε

dy

≥ − āM1

c

∑

k∈Z

β(k)e−η(k+cr)L(η − γε)

{
sup
x∈R

u(x)e−γx

}ε

,

(3.14)

which means that ψ(0)(x) is nonpositive and bounded below. Also, because I(η, u)
is increasing in u and I(η, u)(x) ≥ I(η, 1) infx∈R u(x), we see that ψ(n) ≤ ψ(n−1) ≤
· · · ≤ ψ(0) and

ψ(n)(x) ≥ inf
x∈R

ψ(0)(x)[1 + k(c, η) + (k(c, η))2 + · · ·(k(c, η))n], ∀n ≥ 1, x ∈ R

where k(c, η) = I(η,1)
d+2D+cη . Since Δ(c, λ) > 0, ∀λ ∈ (λ1, λ2) (see Lemma 3.1(ii)) and

I(η, 1) = (d+2D+ cη−Δ(c, η)), we have 0 < k(c, η) < 1. These facts indicate that
the sequence {ψn}, being bounded and monotone, converges to a limit function, ψ

say, which satisfies the equation ψ(x) = 1
c

∫ 0

−∞ e
d+2D+cη

c yI(η, ψ)(x+y)dy+ψ(0)(x).
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Thus, the function φ(x) := ψ(x)eηx satisfies

(3.15) φ(x) =
1

c

∫ 0

−∞
e

d+2D
c yI(0, φ)(x+ y)dy +

1

c

∫ 0

−∞
e

d+2D
c yR(u)(x+ y)dy.

The same equation is satisfied by the wave profile u (see (3.13)). So the function
f(x) := u(x)− ψ(x)eηx satisfies the linear equation

f(x) =
1

c

∫ 0

−∞
e

d+2D
c yI(0, f)(x+ y)dy,

which is equivalent to the linearized wave profile equation

(3.16) cf ′(x) = D[f(x+1)+f(x−1)−2f(x)]−df(x)+b′(0)
∑

k∈Z

β(k)f(x−k−cr).

Since u is nonnegative and ψ is nonpositive, the function f is not zero identically.
Thus, the boundedness of u and ψ implies that f(x) = O(eη|x|) as |x| → +∞.
Further, there are only finitely many eigenvalues in the strip |Reλ| ≤ η (see
Lemma 3.1(iii)). Then, by using solution structure Theorem 2.1 with m = 1, γ = η
and ρ = λ�, we complete the proof. �

Define the sum in (3.11) by f(x) :=
∑nη

l=1

∑kl

p=1 Ml,px
p−1e−iwlx. Next we show

that the function f(x) consists of a single term θeλ1x for some θ > 0. Although f
is nonnegative and real, it may be a sum of complex functions. In order to exclude
complex terms except for the term eλ1x, we need more analysis on wave profiles.

Lemma 3.6. Let f be defined as above. Then f(x) = θeλ1x for some θ > 0.

Proof. From Lemma 3.5, we know for each η sufficiently close to λ1 from the right
that there exists a bounded function ψ such that f(x) = u(x) − ψ(x)eηx. By
Lemma 3.1(iv), we can choose λ0 < λ1 and η > λ1 such that there are no eigenvalues

except for λ1 in the strip λ0 ≤ Reλ ≤ η. Because
∫ 0

−∞ u(x)e−λ0xdx < +∞, we

have that
∫ 0

−∞ f(x)e−λ0xdx =
∫ 0

−∞ u(x)e−λ0xdx−
∫ 0

−∞ ψ(x)e(η−λ0)xdx < +∞. On
the other hand, from the expression of f , we have that

(3.17)

∫ 0

−∞
f(x)e−λ0xdx =

nη∑

l=1

kl∑

p=1

∫ 0

−∞
Ml,px

p−1e(−iwl−λ0)xdx.

Let wl = ul + ivl with ul, vl ∈ R. Define v0 := min1≤l≤nη
{vl}. The right hand

side of (3.17) is dominated by
∑

l∈{l:vl=v0} Ml,p

∫ 0

−∞ xkl−1e(v0−λ0)x−iulxdx, which

is finite if and only if v0 > λ0. Recall that −iwl in expression (3.11) are eigenvalues
in the strip |Reλ| ≤ η, and hence Re(−iwl) ≤ η. At the the same time, Re(−iwl) =
vl ≥ v0 > λ0. These facts together imply that f(x) consists of a single term θeλ1x

with some θ > 0. �

Now we are ready to prove the main result of this section.

Theorem 3.1. Suppose (K), (H) and (L) hold. Then for each c > c∗, there exists
at most one (up to translation) traveling wave (u, c) with u(−∞) = 0.

Proof. Assume that (u1, c) and (u2, c) are two traveling waves of (1.3) with u1(−∞)
= 0 and u2(−∞) = 0. By Lemmas 3.5 and 3.6, we have limx→−∞ ui(x)e

λ1x = θi >
0, i = 1, 2. Thus, Lemma 3.2 implies that u1 is a translation of u2. �
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