On spaces of compact operators on $C(K, X)$ spaces
HTML articles powered by AMS MathViewer
- by Elói Medina Galego
- Proc. Amer. Math. Soc. 139 (2011), 1383-1386
- DOI: https://doi.org/10.1090/S0002-9939-2010-10544-0
- Published electronically: August 23, 2010
- PDF | Request permission
Abstract:
This paper concerns the spaces of compact operators ${\mathcal K}(E, F)$, where $E$ and $F$ are Banach spaces $C([1, \xi ], X)$ of all continuous $X$-valued functions defined on the interval of ordinals $[1, \xi ]$ and equipped with the supremun norm. We provide sufficient conditions on $X$, $Y$, $\alpha$, $\beta$, $\xi$ and $\eta$, with $\omega \leq \alpha \leq \beta < \omega _{1}$ for the following equivalence:
-
[(a)] ${\mathcal K}(C([1, \xi ], X), C([1, \alpha ], Y))$ is isomorphic to ${\mathcal K} (C([1, \eta ], X), C([1, \beta ], Y))$,
-
[(b)] $\beta < \alpha ^{\omega }$.
In this way, we unify and extend results due to Bessaga and Pełczyński (1960) and C. Samuel (2009). Our result covers the case of the classical spaces $X=l_{p}$ and $Y=l_{q}$, with $1<p, q< \infty$.
References
- C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 113132, DOI 10.4064/sm-19-1-53-62
- Peter G. Casazza, Approximation properties, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 271–316. MR 1863695, DOI 10.1016/S1874-5849(01)80009-7
- Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Françoise Lust, Produits tensoriels projectifs d’espaces de Banach faiblement séquentiellement complets, Colloq. Math. 36 (1976), no. 2, 255–267. MR 438153, DOI 10.4064/cm-36-2-255-267
- Elói Medina Galego, Banach spaces of continuous vector-valued functions of ordinals, Proc. Edinb. Math. Soc. (2) 44 (2001), no. 1, 49–62. MR 1879208, DOI 10.1017/S0013091598000716
- Elói Medina Galego, On subspaces and quotients of Banach spaces $C(K,X)$, Monatsh. Math. 136 (2002), no. 2, 87–97. MR 1914222, DOI 10.1007/s006050200036
- Elói Medina Galego, On isomorphic classifications of spaces of compact operators, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3335–3342. MR 2515403, DOI 10.1090/S0002-9939-09-09828-1
- Elói Medina Galego, Complete isomorphic classifications of some spaces of compact operators, Proc. Amer. Math. Soc. 138 (2010), no. 2, 725–736. MR 2557189, DOI 10.1090/S0002-9939-09-10117-X
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- R. Haydon, E. Odell, and H. Rosenthal, On certain classes of Baire-$1$ functions with applications to Banach space theory, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 1–35. MR 1126734, DOI 10.1007/BFb0090209
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- A. Pełczyński, A connection between weakly unconditional convergence and weakly completeness of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 251–253 (unbound insert) (English, with Russian summary). MR 0115072
- Christian Samuel, On spaces of operators on $C(Q)$ spaces ($Q$ countable metric space), Proc. Amer. Math. Soc. 137 (2009), no. 3, 965–970. MR 2457436, DOI 10.1090/S0002-9939-08-09635-4
Bibliographic Information
- Elói Medina Galego
- Affiliation: Department of Mathematics, University of São Paulo, São Paulo, Brazil 05508-090
- MR Author ID: 647154
- Email: eloi@ime.usp.br
- Received by editor(s): November 8, 2009
- Received by editor(s) in revised form: April 9, 2010, and April 16, 2010
- Published electronically: August 23, 2010
- Communicated by: Nigel J. Kalton
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1383-1386
- MSC (2010): Primary 46B03; Secondary 46B25
- DOI: https://doi.org/10.1090/S0002-9939-2010-10544-0
- MathSciNet review: 2748430