The class number of $\mathbb {Q}(\sqrt {-p})$ and digits of $1/p$
HTML articles powered by AMS MathViewer
- by M. Ram Murty and R. Thangadurai
- Proc. Amer. Math. Soc. 139 (2011), 1277-1289
- DOI: https://doi.org/10.1090/S0002-9939-2010-10560-9
- Published electronically: August 30, 2010
- PDF | Request permission
Abstract:
Let $p$ be a prime number such that $p\equiv 1\pmod {r}$ for some integer $r >1$. Let $g>1$ be an integer such that $g$ has order $r$ in $\left (\mathbb {Z}/p\mathbb {Z}\right )^*$. Let \[ \frac 1p = \sum _{k=1}^\infty \frac {x_k}{g^k}\] be the $g$-adic expansion. Our result implies that the “average” digit in the $g$-adic expansion of $1/p$ is $(g-1)/2$ with error term involving the generalized Bernoulli numbers $B_{1,\chi }$ (where $\chi$ is a character modulo $p$ of order $r$ with $\chi (-1) = -1)$. Also, we study, using Bernoulli polynomials and Dirichlet $L$-functions, the set equidistribution modulo $1$ of the elements of the subgroup $H_n$ of $\left (\mathbb {Z}/{n\mathbb Z}\right )^*$ as $n\to \infty$ whenever $|H_n|/\sqrt {n} \to \infty$.References
- J. Bourgain, Exponential sum estimates over subgroups of ${\Bbb Z}^*_q$, $q$ arbitrary, J. Anal. Math. 97 (2005), 317–355. MR 2274981, DOI 10.1007/BF02807410
- Kurt Girstmair, A “popular” class number formula, Amer. Math. Monthly 101 (1994), no. 10, 997–1001. MR 1304325, DOI 10.2307/2975167
- Kurt Girstmair, The digits of $1/p$ in connection with class number factors, Acta Arith. 67 (1994), no. 4, 381–386. MR 1301825, DOI 10.4064/aa-67-4-381-386
- Kurt Girstmair, Periodische Dezimalbrüche—was nicht jeder darüber weiß, Jahrbuch Überblicke Mathematik, 1995, Friedr. Vieweg, Braunschweig, 1995, pp. 163–179 (German). MR 1342348
- Aleksandar Ivić, Two inequalities for the sum of divisors functions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. 7 (1977), 17–22 (English, with Serbo-Croatian summary). MR 0505991
- M. Ram Murty, Problems in analytic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 206, Springer, New York, 2008. Readings in Mathematics. MR 2376618
- M. Ram Murty and Kaneenika Sinha, Effective equidistribution of eigenvalues of Hecke operators, J. Number Theory 129 (2009), no. 3, 681–714. MR 2488597, DOI 10.1016/j.jnt.2008.10.010
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- M. Ram Murty
- Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
- MR Author ID: 128555
- Email: murty@mast.queensu.ca
- R. Thangadurai
- Affiliation: Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahbad, 211019, India
- Email: thanga@hri.res.in
- Received by editor(s): January 18, 2010
- Received by editor(s) in revised form: April 26, 2010
- Published electronically: August 30, 2010
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1277-1289
- MSC (2010): Primary 11A07, 11R29
- DOI: https://doi.org/10.1090/S0002-9939-2010-10560-9
- MathSciNet review: 2748421