Toeplitz and Hankel operators associated with subdiagonal algebras
HTML articles powered by AMS MathViewer
- by Bebe Prunaru
- Proc. Amer. Math. Soc. 139 (2011), 1387-1396
- DOI: https://doi.org/10.1090/S0002-9939-2010-10573-7
- Published electronically: August 31, 2010
- PDF | Request permission
Abstract:
Let $\mathcal M$ be a $\sigma$-finite von Neumann algebra and let $\mathcal A\subset \mathcal M$ be a maximal subdiagonal algebra with respect to some faithful normal expectation $\mathcal E$ on $\mathcal M.$ Let $\phi$ be a normal faithful $\mathcal E$-invariant state on $\mathcal M$, let $L^2(\mathcal M,\phi )$ be the non-commutative Lebesgue space in the sense of U. Haagerup, and consider the Hardy space $H^2(\mathcal A,\phi )\subset L^2(\mathcal M,\phi )$ associated with the pair $(\mathcal A,\phi ).$ For each $x\in \mathcal M$, the Toeplitz operator $T_x\in B(H^2(\mathcal A,\phi ))$ and the Hankel operator $H_x\in B(H^2(\mathcal A,\phi ),H^2(\mathcal A,\phi )^\perp )$ are defined as in the classical case of the unit circle. We show that the mapping $x\mapsto T_x$ is completely isometric on $\mathcal M$ and therefore $\sigma (x)\subset \sigma (T_x)$ for all $x\in \mathcal M.$ We also show that $\|H_x\|=dist(x,\mathcal A)$ for every $x\in \mathcal M.$References
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- David P. Blecher and Louis E. Labuschagne, Logmodularity and isometries of operator algebras, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1621–1646. MR 1946408, DOI 10.1090/S0002-9947-02-03195-1
- David P. Blecher and Louis E. Labuschagne, Von Neumann algebraic $H^p$ theory, Function spaces, Contemp. Math., vol. 435, Amer. Math. Soc., Providence, RI, 2007, pp. 89–114. MR 2359421, DOI 10.1090/conm/435/08369
- David P. Blecher and Christian Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR 2111973, DOI 10.1093/acprof:oso/9780198526599.001.0001
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968
- Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900, DOI 10.1007/978-1-4612-1656-8
- Ruy Exel, Maximal subdiagonal algebras, Amer. J. Math. 110 (1988), no. 4, 775–782. MR 955297, DOI 10.2307/2374650
- U. Haagerup, Noncommutative integration theory, unpublished manuscript, 1978.
- Uffe Haagerup, $L^{p}$-spaces associated with an arbitrary von Neumann algebra, Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977) Colloq. Internat. CNRS, vol. 274, CNRS, Paris, 1979, pp. 175–184 (English, with French summary). MR 560633
- Uffe Haagerup, Marius Junge, and Quanhua Xu, A reduction method for noncommutative $L_p$-spaces and applications, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2125–2165. MR 2574890, DOI 10.1090/S0002-9947-09-04935-6
- Philip Hartman and Aurel Wintner, On the spectra of Toeplitz’s matrices, Amer. J. Math. 72 (1950), 359–366. MR 36936, DOI 10.2307/2372039
- Henry Helson and David Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165–202. MR 97688, DOI 10.1007/BF02392425
- Yoshiki Imina and Kichi-Suke Saito, Hankel operators associated with analytic crossed products, Canad. Math. Bull. 37 (1994), no. 1, 75–81. MR 1261560, DOI 10.4153/CMB-1994-011-6
- Guoxing Ji, Tomoyoshi Ohwada, and Kichi-Suke Saito, Certain structure of subdiagonal algebras, J. Operator Theory 39 (1998), no. 2, 309–317. MR 1620570
- Guoxing Ji and Kichi-Suke Saito, Factorization in subdiagonal algebras, J. Funct. Anal. 159 (1998), no. 1, 191–202. MR 1654186, DOI 10.1006/jfan.1998.3309
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259. MR 121675, DOI 10.2307/2372733
- Richard I. Loebl and Paul S. Muhly, Analyticity and flows in von Neumann algebras, J. Functional Analysis 29 (1978), no. 2, 214–252. MR 504460, DOI 10.1016/0022-1236(78)90007-1
- Michael Marsalli, Noncommutative $H^2$ spaces, Proc. Amer. Math. Soc. 125 (1997), no. 3, 779–784. MR 1350954, DOI 10.1090/S0002-9939-97-03590-9
- Michael Marsalli and Graeme West, Toeplitz operators with noncommuting symbols, Integral Equations Operator Theory 32 (1998), no. 1, 65–74. MR 1643198, DOI 10.1007/BF01193507
- Michael McAsey, Paul S. Muhly, and Kichi-Suke Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), no. 2, 381–409. MR 522266, DOI 10.1090/S0002-9947-1979-0522266-3
- Zeev Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162. MR 82945, DOI 10.2307/1969670
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Kichi-Suke Saito, Toeplitz operators associated with analytic crossed products, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 539–549. MR 1068455, DOI 10.1017/S0305004100069425
- Kichi-Suke Saito, Toeplitz operators associated with analytic crossed products. II. Invariant subspaces and factorization, Integral Equations Operator Theory 14 (1991), no. 2, 251–275. MR 1090704, DOI 10.1007/BF01199908
- T. P. Srinivasan and Ju-kwei Wang, Weak ${}^{\ast }$-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 216–249. MR 0198282
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- Quanhua Xu, On the maximality of subdiagonal algebras, J. Operator Theory 54 (2005), no. 1, 137–146. MR 2168864
Bibliographic Information
- Bebe Prunaru
- Affiliation: Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania
- Email: Bebe.Prunaru@imar.ro
- Received by editor(s): September 10, 2009
- Received by editor(s) in revised form: April 26, 2010
- Published electronically: August 31, 2010
- Additional Notes: This research was partially supported by Grant PNII - Programme “Idei” (code 1194).
- Communicated by: Mario Bonk
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1387-1396
- MSC (2010): Primary 46L51, 47B35; Secondary 47L25, 47L30
- DOI: https://doi.org/10.1090/S0002-9939-2010-10573-7
- MathSciNet review: 2748431