Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data. The supercritical case
HTML articles powered by AMS MathViewer
- by Joana Terra and Noemi Wolanski
- Proc. Amer. Math. Soc. 139 (2011), 1421-1432
- DOI: https://doi.org/10.1090/S0002-9939-2010-10612-3
- Published electronically: September 2, 2010
- PDF | Request permission
Abstract:
In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction $-u^p$, $p>1$ and set in $\mathbb {R}^N$. We consider a bounded, nonnegative initial datum $u_0$ that behaves like a negative power at infinity. That is, $|x|^\alpha u_0(x)\to A>0$ as $|x|\to \infty$ with $0<\alpha \le N$. We prove that, in the supercritical case $p>1+2/\alpha$, the solution behaves asymptotically as that of the heat equation (with diffusivity $\mathfrak {a}$ related to the nonlocal operator) with the same initial datum.References
- Peter W. Bates and Adam Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist. Phys. 95 (1999), no. 5-6, 1119–1139. MR 1712445, DOI 10.1023/A:1004514803625
- Peter W. Bates and Adam Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal. 150 (1999), no. 4, 281–305. MR 1741258, DOI 10.1007/s002050050189
- Peter W. Bates, Paul C. Fife, Xiaofeng Ren, and Xuefeng Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), no. 2, 105–136. MR 1463804, DOI 10.1007/s002050050037
- C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol. 50 (2005), no. 2, 161–188. MR 2120547, DOI 10.1007/s00285-004-0284-4
- Emmanuel Chasseigne, Manuela Chaves, and Julio D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9) 86 (2006), no. 3, 271–291 (English, with English and French summaries). MR 2257732, DOI 10.1016/j.matpur.2006.04.005
- C. Cortazar, M. Elgueta, F. Quiros, N. Wolanski, Large time behavior of the solution to the Dirichlet problem for a nonlocal diffusion equation in an exterior domain, in preparation.
- Carmen Cortazar, Manuel Elgueta, and Julio D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel J. Math. 170 (2009), 53–60. MR 2506317, DOI 10.1007/s11856-009-0019-8
- Carmen Cortazar, Manuel Elgueta, Julio D. Rossi, and Noemi Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 (2008), no. 1, 137–156. MR 2358337, DOI 10.1007/s00205-007-0062-8
- Paul Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in nonlinear analysis, Springer, Berlin, 2003, pp. 153–191. MR 1999098
- Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005–1028. MR 2480109, DOI 10.1137/070698592
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- Luis Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann. Inst. H. Poincaré C Anal. Non Linéaire 16 (1999), no. 1, 49–105 (English, with English and French summaries). MR 1668560, DOI 10.1016/S0294-1449(99)80008-0
- Liviu I. Ignat and Julio D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations, J. Evol. Equ. 8 (2008), no. 4, 617–629. MR 2460931, DOI 10.1007/s00028-008-0372-9
- S. Kamin and L. A. Peletier, Large time behaviour of solutions of the heat equation with absorption, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 3, 393–408. MR 837255
- S. Kamin and M. Ughi, On the behaviour as $t\to \infty$ of the solutions of the Cauchy problem for certain nonlinear parabolic equations, J. Math. Anal. Appl. 128 (1987), no. 2, 456–469. MR 917378, DOI 10.1016/0022-247X(87)90196-X
- Claudia Lederman and Noemi Wolanski, Singular perturbation in a nonlocal diffusion problem, Comm. Partial Differential Equations 31 (2006), no. 1-3, 195–241. MR 2209752, DOI 10.1080/03605300500358111
- Ademir F. Pazoto and Julio D. Rossi, Asymptotic behaviour for a semilinear nonlocal equation, Asymptot. Anal. 52 (2007), no. 1-2, 143–155. MR 2337030
- J. Terra, N. Wolanski, Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data, submitted.
- Linghai Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations 197 (2004), no. 1, 162–196. MR 2030153, DOI 10.1016/S0022-0396(03)00170-0
Bibliographic Information
- Joana Terra
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
- Email: jterra@dm.uba.ar
- Noemi Wolanski
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
- Email: wolanski@dm.uba.ar
- Received by editor(s): November 25, 2009
- Received by editor(s) in revised form: April 29, 2010
- Published electronically: September 2, 2010
- Communicated by: Matthew J. Gursky
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 139 (2011), 1421-1432
- MSC (2010): Primary 35K57, 35B40
- DOI: https://doi.org/10.1090/S0002-9939-2010-10612-3
- MathSciNet review: 2748435