A new proof of the Orlicz Busemann-Petty centroid inequality
HTML articles powered by AMS MathViewer
- by Ai-Jun Li and Gangsong Leng
- Proc. Amer. Math. Soc. 139 (2011), 1473-1481
- DOI: https://doi.org/10.1090/S0002-9939-2010-10651-2
- Published electronically: September 30, 2010
- PDF | Request permission
Abstract:
Using shadow systems, we provide a new proof of the Orlicz Busemann-Petty centroid inequality, which was first obtained by Lutwak, Yang and Zhang.References
- Gautier Berck, Convexity of $L_p$-intersection bodies, Adv. Math. 222 (2009), no. 3, 920–936. MR 2553373, DOI 10.1016/j.aim.2009.05.009
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Stefano Campi and Paolo Gronchi, On the reverse $L^p$-Busemann-Petty centroid inequality, Mathematika 49 (2002), no. 1-2, 1–11 (2004). MR 2059037, DOI 10.1112/S0025579300016004
- Stefano Campi and Paolo Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393–2402. MR 2213713, DOI 10.1090/S0002-9939-06-08241-4
- Stefano Campi and Paolo Gronchi, Volume inequalities for $L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71–80 (2007). MR 2304053, DOI 10.1112/S0025579300000036
- Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221
- Christoph Haberl and Monika Ludwig, A characterization of $L_p$ intersection bodies, Int. Math. Res. Not. , posted on (2006), Art. ID 10548, 29. MR 2250020, DOI 10.1155/IMRN/2006/10548
- Christoph Haberl, $L_p$ intersection bodies, Adv. Math. 217 (2008), no. 6, 2599–2624. MR 2397461, DOI 10.1016/j.aim.2007.11.013
- Christoph Haberl and Franz E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600, DOI 10.1016/j.jfa.2009.04.009
- Christoph Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), no. 5, 2253–2276. MR 2583498, DOI 10.1512/iumj.2009.58.3685
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485–2510.
- Monika Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158–168. MR 1942402, DOI 10.1016/S0001-8708(02)00021-X
- Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191–4213. MR 2159706, DOI 10.1090/S0002-9947-04-03666-9
- Monika Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6, 1409–1428. MR 2275906
- M. Ludwig, M. Reitzner, A classification of SL$(n)$ invariant valuations, Ann. Math. (2) 172 (2010), 1219–1267.
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), no. 3, 375–390. MR 1781476, DOI 10.1215/S0012-7094-00-10432-2
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ John ellipsoids, Proc. London Math. Soc. (3) 90 (2005), no. 2, 497–520. MR 2142136, DOI 10.1112/S0024611504014996
- E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220–242.
- E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365–387.
- Clinton M. Petty, Ellipsoids, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 264–276. MR 731114
- C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93–102. MR 104203, DOI 10.1112/S0025579300001418
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229–236. MR 179686, DOI 10.1007/BF02759738
- Elisabeth Werner and Deping Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3, 762–780. MR 2414321, DOI 10.1016/j.aim.2008.02.002
Bibliographic Information
- Ai-Jun Li
- Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China – and – School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo City, 454000, People’s Republic of China
- MR Author ID: 790015
- Email: liaijun72@163.com
- Gangsong Leng
- Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China
- MR Author ID: 323352
- Email: gleng@staff.shu.edu.cn
- Received by editor(s): February 16, 2010
- Received by editor(s) in revised form: April 27, 2010
- Published electronically: September 30, 2010
- Additional Notes: The authors would like to acknowledge the support from the National Natural Science Foundation of China (10971128), Shanghai Leading Academic Discipline Project (S30104), Scientific Research and Innovation Project of Shanghai Municipal Education Commission (09ZZ94) and Innovation Foundation of Shanghai University (SHUCX080134)
- Communicated by: Mario Bonk
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1473-1481
- MSC (2000): Primary 52A20, 52A40
- DOI: https://doi.org/10.1090/S0002-9939-2010-10651-2
- MathSciNet review: 2748442