NEUMANN PROBLEM ON A HALF-SPACE

FUMIYAMA SHU, MASAKI TANAKA, AND MINORU YANAGISHITA

(Communicated by Mario Bonk)

Abstract. In this paper, a solution of the Neumann problem on a half-space for a slowly growing continuous boundary function is constructed by the generalized Neumann integral with this boundary function. The relation between this particular solution and certain general solutions is discussed. A solution of the Neumann problem for any continuous boundary function is also given explicitly by the Neumann integral with the generalized Neumann kernel depending on this boundary function.

1. Introduction

Let n be a positive integer satisfying $n \geq 2$. Let \mathbb{R}^{n+1} be the $(n+1)$-dimensional Euclidean space. A point in \mathbb{R}^{n+1} is represented by

$$M = (X, y) = (x_1, \ldots, x_n, y)$$

with

$$|M| = (x_1^2 + \ldots + x_n^2 + y^2)^{\frac{1}{2}}.$$

By ∂E we denote the boundary of a subset E of \mathbb{R}^{n+1}. The sphere of radius r centered at the origin of \mathbb{R}^{n+1} is represented by $S_{n+1}(r)$. By T_{n+1} we denote the open half-space

$$\{M = (X, y) \in \mathbb{R}^{n+1} : y > 0\}.$$

Then ∂T_{n+1} is identified with \mathbb{R}^n and the n-dimensional Lebesgue measure at $N \in \partial T_{n+1}$ is denoted by dN. When g is a function defined on ∂T_{n+1}, we define the mean of g as follows:

$$M(g; r) = 2(s_{n+1}r^n)^{-1} \int_{S_{n+1}(r)} g(M) d\sigma_M \quad (r > 0),$$

where s_{n+1} is the surface area of $S_{n+1}(1)$ (the $(n+1)$-dimensional unit sphere S^n) and $d\sigma_M$ is the surface element on $S_{n+1}(r)$ at $M \in S_{n+1}(r)$.

Let f be a continuous function defined on ∂T_{n+1}. A solution of the Neumann problem on T_{n+1} for f is a harmonic function h in T_{n+1} such that

$$\lim_{M \in T_{n+1}, M \to N} \frac{\partial}{\partial y} h(M) = f(N).$$

Received by the editors November 20, 2009.

2000 Mathematics Subject Classification. Primary 31B05; Secondary 31B20.

Key words and phrases. Half-space, Neumann problem, Neumann integral.
for every point $N \in \partial T_{n+1}$. Armitage proved

Theorem A (Armitage [1], Theorem 1 and Remarks). Let f be a continuous function on $\partial T_{n+1} = \mathbb{R}^n$ such that

\[
\int_{\mathbb{R}^n} (1 + |N|)^{1-n} |f(N)| dN < \infty.
\]

Then a solution of the Neumann problem on T_{n+1} for f is given by the Neumann integral I_f for f,

\[
I_f(M) = -\alpha_{n+1} \int_{\mathbb{R}^n} |M - N|^{1-n} f(N) dN \quad (M \in T_{n+1}),
\]

which satisfies

\[
\mathcal{M}(|I_f|; r) = O(1) \quad (r \to \infty),
\]

where $\alpha_{n+1} = 2\{(n-1)s_{n+1}\}^{-1}$.

The following result deals with a type of uniqueness of solutions for the Neumann problem on T_{n+1}.

Theorem B (Armitage [1], Theorem 3). Let k be a positive integer and f be a continuous function on ∂T_{n+1} satisfying (1.1). If h is a solution of the Neumann problem on T_{n+1} for f satisfying

\[
\mathcal{M}(h^+; r) = o(r^k) \quad (r \to \infty),
\]

then h is given by

\[
h(M) = I_f(M) + \begin{cases}
C & (k = 1), \\
\Pi(X) + \sum_{j=1}^{\left\lfloor \frac{k}{2} \right\rfloor} (-1)^j y^{2j} \Delta^j \Pi(X) & (k \geq 2)
\end{cases}
\]

for any $M = (X, y) \in T_{n+1}$, where h^+ is the positive part of h,

\[
\Delta^j = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)^j \quad (j = 1, 2, \ldots),
\]

C is a constant and Π is a polynomial of $X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ of degree less than k in ∂T_{n+1}.

Gardiner [7, Theorem 1] gave a solution of the Neumann problem for any continuous function on ∂T_{n+1}. His solution is constructed using approximation of functions, and hence it is not explicit. In this paper, we will explicitly give a solution of the Neumann problem for any continuous function on ∂T_{n+1} in the same way as Finkelstein and Scheinberg [6] and Yoshida [10] did in the case of the Dirichlet Problem. To do this, Theorem A will be extended by defining generalized Neumann integrals for continuous functions under less restricted conditions than (1.1) (Theorem 1). Siegel and Talvila [9] defined a more complicated generalized Neumann integral for their purpose. But our generalized Neumann integral is much simpler than theirs. By using Theorem 1, we shall give a solution of the Neumann problem for any continuous function on ∂T_{n+1}. Our solution is much simpler than the solution given by Gardiner (Theorem 2). We shall also extend Theorem B (Theorem 3).
2. Statements of results

Let \(M \) and \(N \) be two points in \(T_{n+1} \) and \(\partial T_{n+1} \), respectively. By \(\langle M, N \rangle \) we denote the usual inner product in \(\mathbb{R}^{n+1} \). We note that

\[
|M - N|^{1-n} = \sum_{k=0}^{\infty} c_{k,n+1} |N|^{1-k-n} |M|^k L_{k,n+1}(\rho) \quad (|M| < |N|),
\]

where

\[
(2.1) \quad \rho = \frac{\langle M, N \rangle}{|M||N|}, \quad c_{k,n+1} = \binom{k + n - 2}{k}
\]

and \(L_{k,n+1} \) is the \((n+1)\)-dimensional Legendre polynomial of degree \(k \). We remark that \(L_{k,n+1}(1) = 1, L_{k,n+1}(-1) = (-1)^k, L_{0,n+1} = 1 \) and \(L_{k,n+1}(t) = t \) (see Armitage [3, p. 55]).

Let \(l \) be a non-negative integer. We set

\[
V_{l,n+1}(M, N) = \begin{cases}
-\alpha_{n+1} \sum_{k=0}^{l-1} c_{k,n+1} |N|^{1-k-n} |M|^k L_{k,n+1}(\rho) & (|N| \geq 1, \ l \geq 1), \\
0 & (|N| < 1, \ l \geq 1), \\
0 & (l = 0)
\end{cases}
\]

for any \(M \in T_{n+1} \) and any \(N \in \partial T_{n+1} \). The generalized Neumann kernel

\[
K_{l,n+1}(M, N) = K_{0,n+1}(M, N) - V_{l,n+1}(M, N) \quad (l \geq 0),
\]

where

\[
K_{0,n+1}(M, N) = -\alpha_{n+1} |M - N|^{1-n}.
\]

Since \(|M|^k L_{k,n+1}(\rho) \) \((k \geq 0)\) is harmonic in \(T_{n+1} \) (Armitage [3, Theorem D]), \(K_{l,n+1}(., N) \) is also harmonic in \(T_{n+1} \) for any fixed \(N \in \partial T_{n+1} \).

By \(F_{l,n+1} \) we denote the set of continuous functions \(f \) on \(\partial T_{n+1} = \mathbb{R}^n \) such that

\[
(2.2) \quad \int_{\mathbb{R}^n} \frac{|f(N)|}{1 + |N|^{n+1-l}} dN < \infty.
\]

The following Theorem 1 generalizes Theorem A, which is our result in the case \(l = 0 \).

Theorem 1. Let \(l \) be a non-negative integer and \(f \in F_{l,n+1} \). Then the generalized Neumann integral \(H_{l,n+1} f \) of \(f \), defined in \(T_{n+1} \) by

\[
H_{l,n+1} f(M) = \int_{\mathbb{R}^n} K_{l,n+1}(M, N) f(N) dN,
\]

is a solution of the Neumann problem for \(f \) and

\[
(2.3) \quad \mathcal{M}(H_{l,n+1} f; r) = O(r^l) \quad (r \to \infty).
\]

Remark 1. We remark that Theorem 1 yields multiple representations in the case that \(f \) satisfies (2.2) for more than one \(l \). For example, if \(f \) is bounded with bounded support, then (2.2) is satisfied for every non-negative integer \(l \) and hence many generalized Neumann integrals \(H_{l,n+1} f \) \((l = 0, 1, 2, \ldots)\) of \(f \) are obtained.
We shall define another Neumann kernel. The construction of our Neumann kernel is similar in spirit to Finkelstein and Scheinberg’s construction for the Poisson kernel [6]. Let \(\varphi(t) \) be a positive continuous function of \(t \geq 1 \) satisfying

\[
\varphi(1) = c_n / 2,
\]

where \(c_n = 3(n - 1)2^n \alpha_{n+1} \). Denote the set

\[
\{ t \geq 1 : t^{n-1} \varphi(t) = 2^{-i}c_n \}
\]

by \(U_n(\varphi, i) (i = 1, 2, 3, \ldots) \). Then \(1 \in U_n(\varphi, 1) \). When there is an integer \(L \) such that \(U_n(\varphi, L) \neq \emptyset \) and \(U_n(\varphi, L+1) = \emptyset \), we denote the set \(\{ i : 1 \leq i \leq L \} \) of integers by \(E_n(\varphi) \). Otherwise, we denote the set of all positive integers by \(E_n(\varphi) \).

Let \(t_n(i) = t_n(\varphi, i) \) be the minimum of elements in \(U_n(\varphi, i) \) for each \(i \in E_n(\varphi) \). In the former case, we put \(t_n(L+1) = \infty \). We remark that \(t_n(1) = 1 \). We define \(V_{\varphi, n+1}(M, N) (M \in T_{n+1}, N \in \partial T_{n+1}) \) by

\[
V_{\varphi, n+1}(M, N) = \begin{cases}
0 & |N| < t_n(1), \\
V_{i,n+1}(M, N) & t_n(i) \leq |N| < t_n(i+1) \ (i \in E_n(\varphi)).
\end{cases}
\]

We put

\[
K_{\varphi, n+1}(M, N) = K_{0,n+1}(M, N) - V_{\varphi, n+1}(M, N) \ (M \in T_{n+1}, N \in \partial T_{n+1}).
\]

It is evident that \(K_{\varphi, n+1}(\cdot, N) \) is also harmonic on \(T_{n+1} \) for any fixed \(N \in \partial T_{n+1} \).

To solve the Neumann problem on \(T_{n+1} \) for any continuous function \(f \) on \(\partial T_{n+1} = \mathbb{R}^n \), we have

Theorem 2. Let \(f \) be any continuous function on \(\partial T_{n+1} = \mathbb{R}^n \). Then there is a positive continuous function \(\varphi(t) \) of \(t \geq 1 \), given explicitly in terms of the growth of \(f \), such that

\[
H_{\varphi, n+1}(M) = \int_{\mathbb{R}^n} K_{\varphi, n+1}(M, N)f(N)dN
\]

is a solution of the Neumann problem on \(T_{n+1} \) for \(f \).

The following Theorem 3 extends Theorem B, which is our result in the case \(l = 0 \).

Theorem 3. Let \(k \) be a positive integer and \(l \) be a non-negative integer. Let \(f \in F_{l,n+1} \) and \(h \) be a solution of the Neumann problem on \(T_{n+1} \) for \(f \) such that

(2.4) \[\mathcal{M}(h^+; r) = o(r^{k+l}) \quad (r \to \infty). \]

Then

\[
h(M) = \begin{cases}
H_{l,n+1}f(M) + C & (k = 1), \\
H_{l,n+1}f(M) + \Pi(X) + \sum_{j=1}^{[k/2]} \frac{(-1)^j}{(2j)!} y^{2j} \Delta^j \Pi(X) & (k \geq 2)
\end{cases}
\]

for any \(M = (x, y) \in T_{n+1} \), where \(C \) is a constant and \(\Pi \) is a polynomial of \(X = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) of degree less than \(k + l \).
3. Proofs of Theorems 1, 2 and 3

In this section we use the following notation:

\[B_m(Q, r) = \{ P \in \mathbb{R}^m : |P - Q| < r \} \quad (Q \in \mathbb{R}^m, r > 0) \]

and

\[B_m(r) = \{ P \in \mathbb{R}^m : |P| < r \} \quad (r > 0). \]

First of all, we note two facts concerning \(L_{k,n+1}(\rho) \). If we observe that

\[\frac{d}{d\rho} L_{k,n+1}(\rho) = \frac{k(n+k-1)}{n} L_{k-1,n+3}(\rho) \quad (k \geq 1) \]

from Müller [5, Lemma 13], then we have

\[\frac{\partial}{\partial y} (c_{k,n+1}|M|^k L_{k,n+1}(\rho)) = (n-1)c_{k-1,n+2y}|M|^{k-2} L_{k,n+1}(\rho) \]

\[- (n-1)c_{k-1,n+3y}|M|^{k-2} \rho L_{k-1,n+3}(\rho) \quad (k \geq 1). \]

We also know that

\[|L_{k,m}(\rho)| \leq 1 \]

for any \(\rho \) in (2.1), any non-negative integer \(k \) and any positive integer \(m \geq 2 \) (see Armitage [3, Theorems C and D]).

Lemma 1. Let \(l \) be a non-negative integer. For any \(M \in \mathbf{T}_{n+1} \) and any \(N \in \partial \mathbf{T}_{n+1} \) satisfying \(2|M| < |N| \) and \(|N| \geq 1 \), we have

\[|K_{l,n+1}(M, N)| \leq C_1(l, n)|M|^l|N|^{1-n-l} \]

and

\[\left| \frac{\partial}{\partial y} K_{l,n+1}(M, N) \right| \leq \begin{cases} C_2(l, n)|M|^{l-1}|N|^{1-n-l} & (l \geq 1), \\ C_2(0, n)|N|^{1-n} & (l = 0), \end{cases} \]

where \(C_1(l, n) = 2^{n+l-1}\alpha_n+1 \), \(C_2(l, n) = 3(n-1)2^{n+l-1}\alpha_n+1 \) and \(C_2(0, n) = 3(n-1)2^n\alpha_n+1 \).

Proof. Take any \(M \in \mathbf{T}_{n+1} \) and any \(N \in \partial \mathbf{T}_{n+1} \) satisfying \(2|M| < |N| \) and \(|N| \geq 1 \). Then

\[|K_{l,n+1}(M, N)| = \alpha_n+1 \sum_{k=l}^\infty c_{k,n+1}|N|^{1-n-k}|M|^k L_{k,n+1}(\rho) \]

\[\leq \alpha_n+1 \sum_{k=l}^\infty c_{k,n+1}|N|^{1-n-2k} \left(\frac{2|M|}{|N|} \right)^k |L_{k,n+1}(\rho)| \]

\[\leq \alpha_n+1 \left(\frac{2|M|}{|N|} \right)^l |N|^{1-n} \sum_{k=l}^\infty c_{k,n+1}2^{-k} \]

from (3.2). If we put \(C_1(l, n) = 2^{n+l-1}\alpha_n+1 \), then we have (3.3).
If \(l \geq 2 \), we similarly have

\[
\left| \frac{\partial}{\partial y} K_{l,n+1}(M, N) \right|
\]

\[
\leq \alpha_{n+1} \sum_{k=l}^{\infty} (n-1) c_{k-1,n+2} y |M|^{k-2} |N|^{1-n-k} |L_{k,n+1}(\rho)|
\]

\[
+ \alpha_{n+1} \sum_{k=l}^{\infty} (n-1) c_{k-1,n+3} y |M|^{k-2} |N|^{1-n-k} |L_{k-1,n+3}(\rho)|
\]

\[
\leq (n-1) \alpha_{n+1} |N|^{-n} \sum_{k=l}^{\infty} 2^{1-k} \left(\frac{2 |M|}{|N|} \right)^{k-1} (c_{k-1,n+2} + c_{k-1,n+3})
\]

\[
\leq (n-1) \alpha_{n+1} |N|^{-n} \sum_{k=l}^{\infty} 2^{1-k} (c_{k-1,n+2} + c_{k-1,n+3})
\]

from (3.1). By putting \(C_2(l,n) = 3(n-1)2^{n+l-1} \alpha_{n+1} \), we also obtain (3.4) in the case \(l \geq 2 \). Since for \(l = 1 \) or 0,

\[
\frac{\partial}{\partial y} K_{l,n+1}(M, N) = -\alpha_{n+1} \sum_{k=2}^{\infty} c_{k,n+1} |N|^{1-n-k} \frac{\partial}{\partial y} |M|^k L_{k,n+1}(\rho),
\]

we have

\[
\left| \frac{\partial}{\partial y} K_{l,n+1}(M, N) \right| \leq (n-1) \alpha_{n+1} |N|^{-n} \sum_{k=2}^{\infty} 2^{1-k} (c_{k-1,n+2} + c_{k-1,n+3})
\]

\[
\leq 3(n-1) 2^n \alpha_{n+1} |N|^{-n}
\]

\[
\leq 3(n-1) 2^n a_{n+1} |N|^{1-n}.
\]

This gives (3.4) in the case \(l = 1 \) or 0. \(\square \)

Lemma 2. Let \(l \) be a non-negative integer, \(\delta \) be any positive number satisfying \(0 < \delta < 1 \), and \(N^* \) be any fixed point of \(\partial T_{n+1} \). Then

\[
\left| \frac{\partial}{\partial y} V_{l,n+1}(M, N) \right| \leq C(l, \delta, N^*) y
\]

for any \(M \in B_{n+1}(N^*, \delta) \cap T_{n+1} \) and any \(N \in \partial T_{n+1} \), where \(C(l, \delta, N^*) \) is a constant depending only on \(l \), \(\delta \) and \(N^* \).

Proof. From the definition of \(V_{l,n+1}(M, N) \) and (3.1), we can evidently assume that \(l \geq 3 \) and \(|N| \geq 1 \). Then we have from (3.2) that

\[
\left| \frac{\partial}{\partial y} V_{l,n+1}(M, N) \right| \leq \alpha_{n+1} \sum_{k=2}^{l-1} (n-1) c_{k-1,n+2} y |M|^{k-2} |N|^{1-k-n} |L_{k,n+1}(\rho)|
\]

\[
+ \alpha_{n+1} \sum_{k=2}^{l-1} (n-1) c_{k-1,n+3} y |M|^{k-2} |N|^{1-k-n} |L_{k-1,n+3}(\rho)|
\]

\[
\leq \frac{2 y}{s_{n+1}} \sum_{k=2}^{l-1} (c_{k-1,n+2} + c_{k-1,n+3})(|N^*| + \delta)^{k-2}
\]

\[
= C(l, \delta, N^*) y,
\]
where
\[C(l, \delta, N^*) = \frac{2}{s_{n+1}} \sum_{k=2}^{l-1} (c_{k-1,n+2} + c_{k-1,n+3}) (|N^*| + \delta)^{k-2}. \]

Lemma 3. Let \(l \) be any non-negative integer. Let \(f \) be a locally integrable function on \(\partial T_{n+1} \) satisfying (2.2). Then \(H_{l,n+1} f \) is a harmonic function on \(T_{n+1} \).

Proof. For any fixed \(M \in T_{n+1} \), take a number \(R \) satisfying \(R \geq \max\{1, 2|\!|M|\!|\} \).

Then from Lemma 1 we have
\[\int_{\mathbb{R}^n \setminus B_n(R)} |K_{l,n+1}(M, N)||f(N)|dN \leq C_1(l, n)|M| \int_{\mathbb{R}^n \setminus B_n(R)} \frac{|f(N)|}{|N|^{n+l-1}} dN < \infty. \]

Thus \(H_{l,n+1} f(M) \) is finite for any \(M \in T_{n+1} \). Since the mean value equality for \(H_{l,n+1} f \) follows from Fubini’s theorem, \(H_{l,n+1} f(M) \) is harmonic in \(T_{n+1} \). \(\square \)

Lemma 4. Let \(l \) be any non-negative integer. Let \(f \) be a locally integrable and upper semicontinuous function on \(\partial T_{n+1} \) satisfying (2.2). Then

\[\limsup_{M \in T_{n+1}, M \rightarrow N^*} \frac{\partial}{\partial y} H_{l,n+1} f(M) \leq f(N^*) \]

for any fixed \(N^* \in \partial T_{n+1} \).

Proof. Let \(N^* \) be any fixed point on \(\partial T_{n+1} = \mathbb{R}^n \) and \(\varepsilon \) be any positive number. Take a positive number \(\delta, \delta < 1 \), such that
\[f(N) < f(N^*) + \varepsilon \]
for any \(N \in B_n(N^*, \delta) \). From (2.2) and (3.4), we can choose a number \(R^* \), \(R^* > 2(|N^*| + 1) \), such that
\[\int_{\mathbb{R}^n \setminus B_n(R^*)} \left| \frac{\partial}{\partial y} K_{l,n+1}(M, N) \right| |f(N)|dN < \varepsilon, \]

for any \(M \in T_{n+1} \cap B_{n+1}(N^*, \delta) \). Put
\[J(M) = \int_{B_n(R^*)} f(N) \frac{\partial}{\partial y} K_{0,n+1}(M, N)dN \]
and
\[J_l(M) = -\int_{B_n(R^*)} f(N) \frac{\partial}{\partial y} V_{l,n+1}(M, N)dN \quad (l \geq 0). \]

Since
\[\frac{\partial}{\partial y} K_{0,n+1}(M, N) = \frac{2y}{s_{n+1}} |M - N|^{-n-1} \quad (M = (x, y) \in T_{n+1}, N \in \partial T_{n+1}), \]
we observe that
\[\left| \int_{B_n(R^*) \setminus B_n(N^*, \delta)} f(N) \frac{\partial}{\partial y} K_{0,n+1}(M, N)dN \right| \leq \frac{2y}{s_{n+1}} \int_{B_n(R^*) \setminus B_n(N^*, \delta)} |M - N|^{-n-1}|f(N)|dN \]
\[\leq \frac{2y}{s_{n+1}} \left(\frac{\delta}{2} \right)^{-n-1} \int_{B_n(R^*) \setminus B_n(N^*, \delta)} |f(N)|dN \]
for any \(M \in \mathbf{T}_{n+1} \cap B_{n+1}(N^*, \delta/2) \). Since
\[
1 - \int_{B_n(N^*, \delta)} \frac{\partial}{\partial y} K_{0,n+1}(M, N) dN = \int_{\mathbf{R}^n \setminus B_n(N^*, \delta)} \frac{\partial}{\partial y} K_{0,n+1}(M, N) dN
\]
\[
= \frac{2y}{s_{n+1}} \int_{\mathbf{R}^n \setminus B_n(N^*, \delta)} |M - N|^{-n-1} dN
\]
for any \(M \in \mathbf{T}_{n+1} \) (see Armitage and Gardiner \[4\, p. 24\]), we have
\[
(3.8) \lim_{M \to N^*, M \in \mathbf{T}_{n+1}} \int_{B_n(N^*, \delta)} \frac{\partial}{\partial y} K_{0,n+1}(M, N) dN = 1.
\]
Finally (3.5), (3.7) and (3.8) yield
\[
\limsup_{M \to N^*, M \in \mathbf{T}_{n+1}} J(M) \leq f(N^*) + \varepsilon.
\]
From Lemma 2 we obtain
\[
|J_l(M)| \leq \int_{B_n(R^*)} |f(N)| \left| \frac{\partial}{\partial y} V_{l,n+1}(M, N) \right| dN
\]
\[
\leq \int_{B_n(R^*)} C(l, \delta, N^*) y|f(N)| dN
\]
\[
\leq C_3 y
\]
for any \(M \in \mathbf{T}_{n+1} \cap B_{n+1}(N^*, \delta) \), where
\[
C_3 = C(l, \delta, N^*) \int_{B_n(R^*)} |f(N)| dN.
\]
These and (3.6) yield
\[
\limsup_{M \to N^*, M \in \mathbf{T}_{n+1}} \frac{\partial}{\partial y} H_{l,n+1} f(M)
\]
\[
= \limsup_{M \to N^*, M \in \mathbf{T}_{n+1}} \int_{\mathbf{R}^n} f(N) \frac{\partial}{\partial y} K_{l,n+1}(M, N) dN
\]
\[
= \limsup_{M \to N^*, M \in \mathbf{T}_{n+1}} \left(J(M) + J_l(M) + \int_{\mathbf{R}^n \setminus B_n(R^*)} f(N) \frac{\partial}{\partial y} K_{l,n+1}(M, N) dN \right)
\]
\[
\leq f(N^*) + 2\varepsilon.
\]
Now the conclusion immediately follows. \(\square \)

\textit{Proof of Theorem 1.} It immediately follows from Lemmas 3 and 4 that \(H_{l,n+1} f \) is a harmonic function on \(\mathbf{T}_{n+1} \) and
\[
\lim_{M \to N^*, M \in \mathbf{T}_{n+1}} \frac{\partial}{\partial y} H_{l,n+1} f(M) = f(N^*)
\]
for any \(N^* \in \partial \mathbf{T}_{n+1} \).
We now turn to the proof of (2.3). For any positive number \(r > 1 \) we have

\[
\frac{s_{n+1}r^n}{2} M(|H_{l+1}|; r) = \int_{\sigma_{n+1}(r)} \left| \int_{\mathbb{R}^n} K_{l+1}(M, N) f(N) dN \right| d\sigma_M
\]

\[
\leq \int_{\sigma_{n+1}(r)} \int_{\mathbb{R}^n} |K_{l+1}(M, N) f(N)| dN d\sigma_M
\]

\[
= \int_{\mathbb{R}^n} \int_{\sigma_{n+1}(r)} |K_{l+1}(M, N) f(N)| d\sigma_M dN
\]

\[
= T_{1,l}(r) + T_{2,l}(r),
\]

where

\[
T_{1,l}(r) = \int_{\mathbb{R}^n \setminus B_n(2r)} \int_{\sigma_{n+1}(r)} |K_{l+1}(M, N) f(N)| d\sigma_M dN
\]

and

\[
T_{2,l}(r) = \int_{B_n(2r)} \int_{\sigma_{n+1}(r)} |K_{l+1}(M, N) f(N)| d\sigma_M dN.
\]

We note that if \(l \geq 1 \) and \(1 \leq |N| < 2|M| \), then

\[
|V_{l+1}(M, N)| \leq \alpha_{n+1} \sum_{k=0}^{l-1} c_{k+1} |N|^{1-k-n} |M|^k |L_{k,n+1}(\rho)|
\]

\[
\leq \alpha_{n+1} |N|^{1-n} \sum_{k=0}^{l-1} 2^{-k} c_{k,n+1} \left(\frac{2|M|}{|N|} \right) \]

\[
\leq C_4 |N|^{2-l-n} |M|^{l-1},
\]

where

\[
C_4 = 2^{l-1} \alpha_{n+1} \max_{0 \leq k \leq l-1} 2^{-k} c_{k,n+1}.
\]

Hence we have

\[
\int_{B_n(2r)} |f(N)| \int_{\sigma_{n+1}(r)} |V_{l+1}(M, N)| d\sigma_M dN
\]

\[
\leq 2^{-1} C_4 s_{n+1} r^{n+l} \int_{B_n(2r) \setminus B_n(1)} \frac{|f(N)|}{|N|^{n+l-2}} dN = C_5 r^{n+l},
\]

where

\[
C_5 = C_4 s_{n+1} \int_{\mathbb{R}^n \setminus B_n(1)} \frac{|f(N)|}{|N|^{n+l-1}} dN \quad (< \infty).
\]

Since

\[
\frac{1}{s_{n+1}r^n} \int_{\sigma_{n+1}(r)} |M - N|^{1-n} d\sigma_M \leq r^{1-n}
\]

(see Armitage and Gardiner [4, p. 99]), we obtain

\[
\int_{B_n(2r)} |f(N)| \int_{\sigma_{n+1}(r)} |K_{0,n+1}(M, N)| d\sigma_M dN \leq 2^{-1} \alpha_{n+1} s_{n+1} r \int_{B_n(2r)} |f(N)| dN
\]

\[
\leq 2^{-1} (n-1)^{-1} r \int_{B_n(2r)} \frac{2(2r)^{n+l-1}}{1 + |N|^{n+l-1}} |f(N)| dN \leq C_6 r^{n+l},
\]

where

\[
C_6 = 2^{n+l-1} (n-1)^{-1} \int_{\mathbb{R}^n} \frac{|f(N)|}{1 + |N|^{n+l-1}} dN.
\]
These immediately yield
\[T_{2,l}(r) \leq \int_{B_n(2r)} |f(N)| \int_{\sigma_{n+1}(r)} (|K_{0,n+1}(M,N)| + |V_{t,n+1}(M,N)|) \ d\sigma_M dN \]
\[\leq (C_5 + C_6)r^{n+l} \, . \]

From Lemma 1 we easily see that
\[T_{1,l}(r) \leq 2^{-1} C_1(l,n)s_{n+1}r^{n+l} \int_{\mathbb{R}^n \setminus B_n(2r)} \frac{|f(N)|}{|N|^{n+l-1}} dN \leq C_7 r^{n+l}, \]
where
\[C_7 = 2^{-1} C_1(l,n)s_{n+1} \int_{\mathbb{R}^n \setminus B_n(1)} \frac{|f(N)|}{|N|^{n+l-1}} dN. \]
These give (2.3). \qed

To prove Theorem 2, we need

Lemma 5. Let \(\varphi(t) \) be a positive continuous function of \(t \geq 1 \) satisfying \(\varphi(1) = c_n/2. \) Then for any \(M \in \mathbf{T}_{n+1} \) and any \(N \in \partial \mathbf{T}_{n+1} \) satisfying \(|N| > \max\{1,4|M|\}, \)
\begin{equation}
|K_{\varphi,n+1}(M,N)| < \varphi(|N|)
\end{equation}
and
\begin{equation}
\left| \frac{\partial}{\partial y} K_{\varphi,n+1}(M,N) \right| < 4\varphi(|N|).
\end{equation}

Proof. Take any \(M \in \mathbf{T}_{n+1} \) and any \(N \in \partial \mathbf{T}_{n+1} \) satisfying \(|N| > \max\{1,4|M|\}. \) Choose an integer \(i_0 \in E_n(\varphi) \) such that \(t_n(i_0) \leq |N| < t_n(i_0 + 1). \) Then
\[K_{\varphi,n+1}(M,N) = K_{i_0,n+1}(M,N). \]
From Lemma 1 we easily see that
\[|K_{i_0,n+1}(M,N)| \leq C_1(i_0,n)|M||i_0||N|^{1-n-i_0} \leq C_1(i_0,n)2^{-2i_0}|N|^{1-n} \]
Hence
\[|K_{\varphi,n+1}(M,N)| \leq C_1(i_0,n)2^{-2i_0}|N|^{1-n} \leq \varphi(|N|). \]
In the same way we can also see (3.11) by applying Lemma 1 to \(\frac{\partial}{\partial y} K_{i_0,n+1}(M,N). \) \qed

Proof of Theorem 2. Let \((t,\Theta)\) be the spherical coordinates in \(\mathbb{R}^n. \) We identify \((1,\Theta)\in \mathbf{S}^{n-1} \) with \(\Theta. \) Put
\[C_8 = \frac{c_n}{2} \max \left\{ 1, \int_{\mathbf{S}^{n-1}} |f(1,\Theta)| d\Theta \right\} \]
and
\[\psi(t) = \left\{ \begin{array}{ll}
C_8 t^{n-1} \left(\int_{\mathbf{S}^{n-1}} |f(t,\Theta)| d\Theta \right)^{-1} \left(\int_{\mathbf{S}^{n-1}} |f(t,\Theta)| d\Theta \geq 0 \right),
\frac{c_n}{2} \psi(t),
\end{array} \right. \]
for \(t \geq 1, \) where \(d\Theta \) is the surface element of \(\mathbf{S}^{n-1} \) at \((1,\Theta)\in \mathbf{S}^{n-1}. \) If we define \(\varphi(t) \) \((t \geq 1)\) by
\[\varphi(t) = \min \left\{ \frac{c_n}{2}, \psi(t) \right\}, \]
then $\varphi(t)$ is a positive continuous function satisfying $\varphi(1) = c_n/2$. For any fixed $M \in \mathbb{T}_{n+1}$ we can choose a number $R_1 > \max\{1, 4|M|\}$ such that

$$
\int_{\mathbb{R}^n \setminus B_n(R_1)} |K_{\varphi,n+1}(M, N)f(N)|dN \\
\leq \int_{R_1}^{\infty} \left(\int_{S^{n-1}} |f(t, \Theta)|d\Theta \right) \varphi(t)t^{n-1}dt \\
\leq C_8 \int_{R_1}^{\infty} t^{-2}dt < \infty
$$

from Lemma 5. It is evident that

$$
\int_{B_n(R_1)} |K_{\varphi,n+1}(M, N)f(N)|dN < \infty.
$$

These give that

$$
\int_{\mathbb{R}^n} |K_{\varphi,n+1}(M, N)f(N)|dN < \infty.
$$

To see that $H_{\varphi,n+1}f(M)$ is harmonic in \mathbb{T}_{n+1}, we observe from Fubini’s theorem that $H_{\varphi,n+1}f(M)$ has the locally mean-value property.

Finally we shall show that

$$
\lim_{M \in \mathbb{T}_{n+1}, M \to N^*} \frac{\partial}{\partial y}H_{\varphi,n+1}f(M) = f(N^*)
$$

for any fixed $N^* \in \partial \mathbb{T}_{n+1}$. In a similar way to (3.12) we also have

$$
\int_{\mathbb{R}^n \setminus B_n(R_1)} \left| \frac{\partial}{\partial y}K_{\varphi,n+1}(M, N)f(N) \right|dN < \infty
$$

for any fixed $M \in \mathbb{T}_{n+1}$ and any number $R_1 > \max\{1, 4|M|\}$. Let ε be any positive number. Choose a sufficiently large number $R^* (R^* > 4(|N^*| + 1))$ such that

$$
\int_{\mathbb{R}^n \setminus B_n(R^*)} \left| \frac{\partial}{\partial y}K_{\varphi,n+1}(M, N)f(N) \right|dN < \varepsilon.
$$

Since f is continuous on $\partial \mathbb{T}_{n+1}$, take a positive number $\delta (\delta < 1)$ such that

$$
f(N) < f(N^*) + \varepsilon
$$

for any $N \in B_n(N^*, \delta)$. In the completely same way as the proof of Lemma 4, we also obtain

$$
\lim_{M \in \mathbb{T}_{n+1}, M \to N^*} \sup_{f} \int_{B_n(R^*)} f(N) \frac{\partial}{\partial y}K_{0,n+1}(M, N)dN \leq f(N^*) + \varepsilon.
$$

If we take an integer $i_0 \in E_n(\varphi)$ satisfying $t_n(i_0) \leq R^* < t_n(i_0 + 1)$, then we see from Lemma 2 that

$$
\int_{B_n(R^*)} |f(N)| \left| \frac{\partial}{\partial y}V_{\varphi,n+1}(M, N) \right|dN \leq \int_{B_n(R^*)} \sum_{i=1}^{i_0} \left| \frac{\partial}{\partial y}V_{i,n+1}(M, N)f(N) \right|dN
$$

$$
\leq \gamma \int_{B_n(R^*)} \sum_{i=1}^{i_0} C(i, \delta, N^*)|f(N)|dN = C_9y
$$

for any $M \in B_{n+1}(N^*, \delta) \cap \mathbb{T}_{n+1}$, where C_9 is a constant. These yield

$$
\lim_{M \in \mathbb{T}_{n+1}, M \to N^*} \sup_{f} \int_{\mathbb{R}^n} f(N) \frac{\partial}{\partial y}K_{\varphi,n+1}(M, N)dN \leq f(N^*) + 2\varepsilon.
$$
By replacing f with $-f$, we also have
\[
\liminf_{M \in T_{n+1}, M \to N^*} \int_{\mathbb{R}^n} f(N) \frac{\partial}{\partial y} \mathcal{K}_{\varphi,n+1}(M, N) dN \geq f(N^*) - 2\varepsilon.
\]
From these, (3.13) follows immediately. \qed

To prove Theorem 3 completely we shall first give an easy proof of the following lemma, which is proved in a different way from Armitage [1].

Lemma 6 (Armitage [1, Lemma 2]). If $H(M)$ is a harmonic polynomial of $M = (X, y) \in \mathbb{R}^{n+1}$ of degree m and $\partial H/\partial y$ vanishes on ∂T_{n+1}, then there is a polynomial Π of $X \in \mathbb{R}^n$ of degree m such that
\[
H(X, y) = \begin{cases}
\Pi(X) + \sum_{j=1}^{[\frac{1}{2}m]} \frac{(-1)^j}{(2j)!} y^{2j} \Delta^j \Pi(X) & (m \geq 2), \\
\Pi(X) & (m = 0, 1).
\end{cases}
\]

Proof. Put
\[(3.14) \quad H(X, y) = \Pi_0(X) + \Pi_1(X)y + \cdots + \Pi_m(X)y^m \quad ((X, y) \in \mathbb{R}^{n+1}),
\]
where $\Pi_j(X)$ is a polynomial of $X \in \mathbb{R}^n$ of degree at most $m - j$. We remark that a sequence of the equations
\[(3.15) \quad \Pi_j(X) = -j^{-1}(j - 1)^{-1}\Delta \Pi_{j-2}(X) \quad (j = 2, 3, \ldots, m)
\]
and
\[(3.16) \quad \Pi_1(X) = 0
\]
follows from
\[
\Delta H = 0 \quad \text{on } \mathbb{R}^{n+1} \quad \text{and} \quad \partial H/\partial y = 0 \quad \text{on } \mathbb{R}^n,
\]
respectively. If we set $\Pi(X) = \Pi_0(X)$ on \mathbb{R}^n, then
\[
H(X, y) = \Pi(X) + \sum_{j=1}^{[\frac{1}{2}m]} \frac{(-1)^j}{(2j)!} y^{2j} \Delta^j \Pi(X)
\]
from (3.14), (3.15) and (3.16). \qed

Proof of Theorem 3. Suppose that f and h are two functions given in Theorem 3. Then we know from Theorem 1 that $h - H_{l,n+1}f$ has a harmonic continuation H to \mathbb{R}^{n+1} such that H is an even function of y (see Armitage [2, §8.2]). Now we have
\[
\mathcal{M}(H^+; r) = \mathcal{M}((h - H_{l,n+1}f)^+; r) \\
\leq \mathcal{M}(h^+; r) + \mathcal{M}(|H_{l,n+1}f|; r) \\
= o(r^{k+l}) + o(r^{l+1}) = o(r^{k+l}) \quad (r \to \infty),
\]
by (2.4) and (2.3) of Theorem 1. This implies that H is a polynomial of degree less than $k + l$ (see Brelot [3, Appendix]). The conclusions of the theorem follow immediately from Lemma 6. \qed
References

Rakuten, Inc., 604, 1778-1 Hisasue, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0026, Japan

E-mail address: fumiyama.shu@mail.rakuten.com.tw

Department of Mathematics and Informatics, Division of Fundamental Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail address: emblem-yp5@graduate.chiba-u.jp

Department of Mathematics and Informatics, Division of Fundamental Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail address: myanagis@g.math.s.chiba-u.ac.jp