Characterizing isotopic continua in the sphere
HTML articles powered by AMS MathViewer
- by Lex G. Oversteegen and Kirsten I. S. Valkenburg
- Proc. Amer. Math. Soc. 139 (2011), 1495-1510
- DOI: https://doi.org/10.1090/S0002-9939-2010-10830-4
- Published electronically: December 8, 2010
- PDF | Request permission
Abstract:
In this paper we will generalize the following well-known result. Suppose that $I$ is an arc in the complex sphere $\mathbb {C}^*$ and $h:I\to \mathbb {C}^*$ is an embedding. Then there exists an orientation-preserving homeomorphism $H:\mathbb {C}^*\to \mathbb {C}^*$ such that $H\restriction I=h$. It follows that $h$ is isotopic to the identity.
Suppose $X\subset \mathbb {C}^*$ is an arbitrary, in particular not necessarily locally connected, continuum. In this paper we give necessary and sufficient conditions on an embedding $h:X\to \mathbb {C}^*$ to be extendable to an orientation-preserving homeomorphism of the entire sphere. It follows that in this case $h$ is isotopic to the identity. The proof will make use of partitions of complementary domains $U$ of $X$, into hyperbolically convex subsets, which have limited distortion under the conformal map $\varphi _U:\mathbb {D}\to U$ on the unit disk.
References
- Jan M. Aarts and Lex G. Oversteegen, The homeomorphism group of the hairy arc, Compositio Math. 96 (1995), no. 3, 283–292. MR 1327147
- Jan Aarts, G. Brouwer, and Lex G. Oversteegen, Centerlines of regions in the sphere, Topology Appl. 156 (2009), no. 10, 1776–1785. MR 2519213, DOI 10.1016/j.topol.2009.03.007
- R. H. Bing and Michael Starbird, Linear isotopies in $E^{2}$, Trans. Amer. Math. Soc. 237 (1978), 205–222. MR 461510, DOI 10.1090/S0002-9947-1978-0461510-7
- Alexander Blokh and Lex Oversteegen, A fixed point theorem for branched covering maps of the plane, Fund. Math. 206 (2009), 77–111. MR 2576262, DOI 10.4064/fm206-0-6
- A. M. Blokh, R.J. Fokkink, J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn, Fixed point theorems for plane continua with applications, arXiv:1004.0214.
- G. A. Brouwer, Green’s functions from a metric point of view, Ph.D. dissertation, University of Alabama at Birmingham, 2005.
- E. F. Collingwood, A theorem on prime ends, J. London Math. Soc. 31 (1956), 344–349. MR 80158, DOI 10.1112/jlms/s1-31.3.344
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- D. B. A. Epstein, Prime ends, Proc. London Math. Soc. (3) 42 (1981), no. 3, 385–414. MR 614728, DOI 10.1112/plms/s3-42.3.385
- D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83–107. MR 214087, DOI 10.1007/BF02392203
- Kazuhiro Kawamura, Lex G. Oversteegen, and E. D. Tymchatyn, On homogeneous totally disconnected $1$-dimensional spaces, Fund. Math. 150 (1996), no. 2, 97–112. MR 1391294, DOI 10.4064/fm-150-2-97-112
- Ravi S. Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89–129. MR 1273468, DOI 10.1007/BF02572311
- Wayne Lewis, Embeddings of the pseudo-arc in $E^{2}$, Pacific J. Math. 93 (1981), no. 1, 115–120. MR 621602
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- L. G. Oversteegen and E. D. Tymchatyn, Extending isotopies of planar continua, Annals of Mathematics 172 (2010), 2105–2133.
- Peter Seibert, Über die Randstrukturen von Überlagerungsflächen, Math. Nachr. 19 (1958), 339–352 (German). MR 105497, DOI 10.1002/mana.19580190125
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- L. Zibenman, The Osgood-Schoenflies theorem revisited, Uspekhi Mat. Nauk 60 (2005), no. 4(364), 67–96 (Russian, with Russian summary); English transl., Russian Math. Surveys 60 (2005), no. 4, 645–672. MR 2190924, DOI 10.1070/RM2005v060n04ABEH003672
- William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR 2508255, DOI 10.1201/b10617-3
Bibliographic Information
- Lex G. Oversteegen
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170
- MR Author ID: 134850
- Email: overstee@math.uab.edu
- Kirsten I. S. Valkenburg
- Affiliation: Faculteit der Exacte Wetenschappen, Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
- Email: kivalken@few.vu.nl
- Received by editor(s): November 2, 2009
- Received by editor(s) in revised form: April 8, 2010
- Published electronically: December 8, 2010
- Additional Notes: The first author was supported in part by NSF-DMS-0906316.
The second author was supported by the Netherlands Organisation for Scientific Research (NWO), under grant 613.000.551, and thanks the Department of Mathematics at UAB for its hospitality. - Communicated by: Alexander N. Dranishnikov
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1495-1510
- MSC (2010): Primary 54C20, 57N37; Secondary 57N05
- DOI: https://doi.org/10.1090/S0002-9939-2010-10830-4
- MathSciNet review: 2748444