Semigroups of holomorphic functions in the polydisk
HTML articles powered by AMS MathViewer
- by M. D. Contreras, C. de Fabritiis and S. Díaz-Madrigal
- Proc. Amer. Math. Soc. 139 (2011), 1617-1624
- DOI: https://doi.org/10.1090/S0002-9939-2010-10571-3
- Published electronically: October 4, 2010
- PDF | Request permission
Abstract:
In this paper we provide an easy-to-use characterization of infinitesimal generators of semigroups of holomorphic functions in the polydisk. We also present a number of examples related to that characterization.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- Marco Abate, The infinitesimal generators of semigroups of holomorphic maps, Ann. Mat. Pura Appl. (4) 161 (1992), 167–180. MR 1174816, DOI 10.1007/BF01759637
- Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101–115. MR 480965
- Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, Classification of semigroups of linear fractional maps in the unit ball, Adv. Math. 208 (2007), no. 1, 318–350. MR 2304320, DOI 10.1016/j.aim.2006.02.010
- Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, Infinitesimal generators associated with semigroups of linear fractional maps, J. Anal. Math. 102 (2007), 119–142. MR 2346555, DOI 10.1007/s11854-007-0018-9
- Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, Aleksandrov-Clark measures and semigroups of analytic functions in the unit disc, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 231–240. MR 2386848
- Mark Elin, Marina Levenshtein, David Shoikhet, and Roberto Tauraso, Rigidity of holomorphic generators and one-parameter semigroups, Dynam. Systems Appl. 16 (2007), no. 2, 251–266. MR 2330793
- Masashi Kobayashi, On the convexity of the Kobayashi metric on a taut complex manifold, Pacific J. Math. 194 (2000), no. 1, 117–128. MR 1756629, DOI 10.2140/pjm.2000.194.117
- Simeon Reich and David Shoikhet, A characterization of holomorphic generators on the Cartesian product of Hilbert balls, Taiwanese J. Math. 2 (1998), no. 4, 383–396. MR 1662941, DOI 10.11650/twjm/1500407010
- David Shoikhet, Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849612, DOI 10.1007/978-94-015-9632-9
Bibliographic Information
- M. D. Contreras
- Affiliation: Departamento de Matemática Aplicada II, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, 41092, Sevilla, Spain
- MR Author ID: 335888
- Email: contreras@us.es
- C. de Fabritiis
- Affiliation: Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italia
- MR Author ID: 294935
- Email: fabritiis@dipmat.univpm.it
- S. Díaz-Madrigal
- Affiliation: Departamento de Matemática Aplicada II, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, 41092, Sevilla, Spain
- MR Author ID: 310764
- Email: madrigal@us.es
- Received by editor(s): February 8, 2010
- Received by editor(s) in revised form: May 4, 2010
- Published electronically: October 4, 2010
- Additional Notes: The first and third authors were partially supported by the Ministerio de Ciencia e Innovación and the European Union (FEDER), project MTM2009-14694-C02-02, by La Consejería de Educación y Ciencia de la Junta de Andalucía and by the European Science Foundation Research Networking Programme HCAA
- Communicated by: Franc Forstneric
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 139 (2011), 1617-1624
- MSC (2010): Primary 32A99; Secondary 37L05
- DOI: https://doi.org/10.1090/S0002-9939-2010-10571-3
- MathSciNet review: 2763751