Weighted short-interval character sums
HTML articles powered by AMS MathViewer
- by Shigeru Kanemitsu, Hailong Li and Nianliang Wang
- Proc. Amer. Math. Soc. 139 (2011), 1521-1532
- DOI: https://doi.org/10.1090/S0002-9939-2010-10572-5
- Published electronically: September 15, 2010
- PDF | Request permission
Abstract:
In this paper we shall establish the counterpart of Szmidt, Urbanowicz and Zagier’s formula in the sense of the Hecker correspondence. The motivation is the derivation of the values of the Riemann zeta-function at positive even integral arguments from the partial fraction expansion for the hyperbolic cotangent function (or the cotangent function). Since the last is equivalent to the functional equation, we may view their elegant formula as one for the Lambert series, and comparing the Laurent coefficients, we may give a functional equational approach to the short-interval character sums with polynomial weight.
In view of the importance of these short-interval character sums, we assemble some handy formulations for them that are derived from Szmidt, Urbanowicz and Zagier’s formula and Yamamoto’s method, which also gives the conjugate sums. We shall also state the formula for the values of the Dirichlet $L$-function with imprimitive characters.
References
- Tom M. Apostol, Euler’s $\phi$-function and separable Gauss sums, Proc. Amer. Math. Soc. 24 (1970), 482–485. MR 257006, DOI 10.1090/S0002-9939-1970-0257006-6
- Tom M. Apostol, Dirichlet $L$-functions and primitive characters, Proc. Amer. Math. Soc. 31 (1972), 384–386. MR 285499, DOI 10.1090/S0002-9939-1972-0285499-9
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Bruce C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), no. 1, 147–189. MR 429703, DOI 10.1216/RMJ-1977-7-1-147
- Bruce C. Berndt, Periodic Bernoulli numbers, summation formulas and applications, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 143–189. MR 0389729
- Bruce C. Berndt, Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications, J. Number Theory 7 (1975), no. 4, 413–445. MR 382187, DOI 10.1016/0022-314X(75)90045-1
- Bruce C. Berndt, Classical theorems on quadratic residues, Enseign. Math. (2) 22 (1976), no. 3-4, 261–304. MR 441835
- Bruce C. Berndt and Marvin I. Knopp, Hecke’s theory of modular forms and Dirichlet series, Monographs in Number Theory, vol. 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2387477
- S. Bochner, Some properties of modular relations, Ann. of Math. (2) 53 (1951), 332–363. MR 47719, DOI 10.2307/1969546
- P. E. Böhmer, Differenzengleichungen und Bestimmte Integrale, Koecher Verlag, Berlin, 1939.
- L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174–182. MR 109132, DOI 10.1515/crll.1959.202.174
- K. Chakraborty, S. Kanemitsu and H. Tsukada, Arithmetical Fourier series and the modular relation, to appear.
- Paromita Chowla, On the class-number of real quadratic fields, J. Reine Angew. Math. 230 (1968), 51–60. MR 225752, DOI 10.1515/crll.1968.230.51
- Karl Dilcher, Ladislav Skula, and Ilja Sh. Slavutskiǐ, Bernoulli numbers, Queen’s Papers in Pure and Applied Mathematics, vol. 87, Queen’s University, Kingston, ON, 1991. Bibliography (1713–1990). MR 1119305
- Helmut Hasse, Vorlesungen über Zahlentheorie, Die Grundlehren der mathematischen Wissenschaften, Band 59, Springer-Verlag, Berlin-New York, 1964 (German). Zweite neubearbeitete Auflage. MR 0188128
- Taku Ishii and Takayuki Oda, A short history on investigation of the special values of zeta and $L$-functions of totally real number fields, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 198–233. MR 2208776, DOI 10.1142/9789812774415_{0}010
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526
- Wells Johnson and Kevin J. Mitchell, Symmetries for sums of the Legendre symbol, Pacific J. Math. 69 (1977), no. 1, 117–124. MR 434936
- Henri Joris, On the evaluation of Gaussian sums for non-primitive Dirichlet characters, Enseign. Math. (2) 23 (1977), no. 1-2, 13–18. MR 441888
- Shigeru Kanemitsu and Takako Kuzumaki, Transformation formulas for Lambert series, Šiauliai Math. Semin. 4(12) (2009), 105–123. MR 2530201
- S. Kanemitsu, J. Ma and Y. Tanigawa, Arithmetical identities and zeta-functions, Math. Nachr., to appear.
- Shigeru Kanemitsu, Jing Ma, and Wenpeng Zhang, On the discrete mean value of the product of two Dirichlet $L$-functions, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 2, 149–164. MR 2545597, DOI 10.1007/s12188-009-0016-1
- Shigeru Kanemitsu, Yoshio Tanigawa, and Masami Yoshimoto, Ramanujan’s formula and modular forms, Number theoretic methods (Iizuka, 2001) Dev. Math., vol. 8, Kluwer Acad. Publ., Dordrecht, 2002, pp. 159–212. MR 1974140, DOI 10.1007/978-1-4757-3675-5_{1}0
- Shigeru Kanemitsu and Haruo Tsukada, Vistas of special functions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. MR 2352572, DOI 10.1142/9789812708830
- S. Kanemitsu, J. Urbanowicz and N. -L. Wang, Class number formula of a certain imaginary quadratic field, to appear.
- Marvin I. Knopp, Hamburger’s theorem on $\zeta (s)$ and the abundance principle for Dirichlet series with functional equations, Number theory, Trends Math., Birkhäuser, Basel, 2000, pp. 201–216. MR 1764804
- Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
- Heinrich-Wolfgang Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131–140 (German). MR 92812, DOI 10.1007/BF02941946
- M. Lerch, Essais sur le calcul de nombre de classe de formes quadratiques binaires aux coefficients entiers, Acta Math. 29 (1905), 333-424; 30 (1906), 203-293.
- John Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. (2) 29 (1983), no. 3-4, 281–322. MR 719313
- Yasuo Morita, On the Hurwitz-Lerch $L$-functions, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 29–43. MR 441924
- Jürgen Neukirch, The Beĭlinson conjecture for algebraic number fields, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 193–247. MR 944995
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216
- A. Schinzel, J. Urbanowicz, and P. Van Wamelen, Class numbers and short sums of Kronecker symbols, J. Number Theory 78 (1999), no. 1, 62–84. MR 1706925, DOI 10.1006/jnth.1999.2396
- Janusz Szmidt, Jerzy Urbanowicz, and Don Zagier, Congruences among generalized Bernoulli numbers, Acta Arith. 71 (1995), no. 3, 273–278. MR 1339132, DOI 10.4064/aa-71-3-273-278
- H. S. Vandiver, An arithmetical theory of the Bernoulli numbers, Trans. Amer. Math. Soc. 51 (1942), 502–531. MR 6742, DOI 10.1090/S0002-9947-1942-0006742-2
- Nianliang Wang, Junzhuang Li, and Duansen Liu, Euler numbers congruences and Dirichlet $L$-functions, J. Number Theory 129 (2009), no. 6, 1522–1531. MR 2521491, DOI 10.1016/j.jnt.2009.01.004
- Yoshihiko Yamamoto, Dirichlet series with periodic coefficients, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) Japan Soc. Promotion Sci., Tokyo, 1977, pp. 275–289. MR 0450213
Bibliographic Information
- Shigeru Kanemitsu
- Affiliation: Graduate School of Advanced Technology, Kinki University Iizuka, Fukuoka, Japan, 820-8555.
- Email: kanemitu@fuk.kindai.ac.jp
- Hailong Li
- Affiliation: Department of Mathematics, WeiNan Teachers College, WeiNan, People’s Republic of China, 714000.
- Email: lihailong@wntc.edu.cn
- Nianliang Wang
- Affiliation: Institute of Mathematics, Shangluo University, Shangluo Shaanxi 726000, People’s Republic of China
- Email: wangnianliangshangluo@yahoo.com.cn
- Received by editor(s): October 28, 2009
- Received by editor(s) in revised form: February 11, 2010, and May 4, 2010
- Published electronically: September 15, 2010
- Additional Notes: The authors were supported in part by JSPS grant No. 21540029 and by the NSF of Shaanxi Province (No. 2010JM1009).
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 139 (2011), 1521-1532
- MSC (2010): Primary 11L03, 11L26; Secondary 11B68, 11T24, 11S40
- DOI: https://doi.org/10.1090/S0002-9939-2010-10572-5
- MathSciNet review: 2763742
Dedicated: Dedicated to Professor Masaaki Yoshida on his sixtieth birthday with great respect and friendship