## Some remarks on configuration spaces

HTML articles powered by AMS MathViewer

- by George Raptis
- Proc. Amer. Math. Soc.
**139**(2011), 1879-1887 - DOI: https://doi.org/10.1090/S0002-9939-2010-10580-4
- Published electronically: October 6, 2010
- PDF | Request permission

## Abstract:

This paper studies the homotopy type of the configuration spaces $F_n(X)$ by introducing the idea of configuration spaces of maps. For every map $f: X \to Y$, the configuration space $F_n(f)$ is the space of configurations in $X$ that have distinct images in $Y$. We show that the natural maps $F_n(X) \leftarrow F_n(f) \rightarrow F_n(Y)$ are homotopy equivalences when $f$ is a proper cell-like map between $d$-manifolds. We also show that the best approximation to $X \mapsto F_n(X)$ by a homotopy invariant functor is given by the $n$-fold product map.## References

- Mokhtar Aouina and John R. Klein,
*On the homotopy invariance of configuration spaces*, Algebr. Geom. Topol.**4**(2004), 813–827. MR**2100681**, DOI 10.2140/agt.2004.4.813 - Steve Armentrout,
*Cellular decompositions of $3$-manifolds that yield $3$-manifolds*, Memoirs of the American Mathematical Society, No. 107, American Mathematical Society, Providence, R.I., 1971. MR**0413104** - C.-F. Bödigheimer,
*Stable splittings of mapping spaces*, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 174–187. MR**922926**, DOI 10.1007/BFb0078741 - Morton Brown,
*A proof of the generalized Schoenflies theorem*, Bull. Amer. Math. Soc.**66**(1960), 74–76. MR**117695**, DOI 10.1090/S0002-9904-1960-10400-4 - T. A. Chapman,
*Cell-like mappings*, Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, N.Y., 1973), Lecture Notes in Math., Vol. 428, Springer, Berlin, 1974, pp. 230–240. MR**0383423** - T. A. Chapman,
*Homotopy conditions which detect simple homotopy equivalences*, Pacific J. Math.**80**(1979), no. 1, 13–46. MR**534693** - Marshall M. Cohen,
*A course in simple-homotopy theory*, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR**0362320** - Edward Fadell and Lee Neuwirth,
*Configuration spaces*, Math. Scand.**10**(1962), 111–118. MR**141126**, DOI 10.7146/math.scand.a-10517 - Philip S. Hirschhorn,
*Model categories and their localizations*, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR**1944041**, DOI 10.1090/surv/099 - Mark Hovey,
*Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR**1650134** - R. C. Lacher,
*Cell-like mappings of $\textrm {ANR}’s$*, Bull. Amer. Math. Soc.**74**(1968), 933–935. MR**244963**, DOI 10.1090/S0002-9904-1968-12093-2 - R. C. Lacher,
*Cell-like mappings. I*, Pacific J. Math.**30**(1969), 717–731. MR**251714** - Norman Levitt,
*Spaces of arcs and configuration spaces of manifolds*, Topology**34**(1995), no. 1, 217–230. MR**1308497**, DOI 10.1016/0040-9383(94)E0012-9 - Riccardo Longoni and Paolo Salvatore,
*Configuration spaces are not homotopy invariant*, Topology**44**(2005), no. 2, 375–380. MR**2114713**, DOI 10.1016/j.top.2004.11.002 - W. J. R. Mitchell and D. Repovš,
*The topology of cell-like mappings*, Rend. Sem. Fac. Sci. Univ. Cagliari**58**(1988), no. suppl., 265–300. Conference on Differential Geometry and Topology (Sardinia, 1988). MR**1122860** - J. H. Roberts and N. E. Steenrod,
*Monotone transformations of two-dimensional manifolds*, Ann. of Math. (2)**39**(1938), no. 4, 851–862. MR**1503441**, DOI 10.2307/1968468 - Frank Quinn,
*Ends of maps. III. Dimensions $4$ and $5$*, J. Differential Geometry**17**(1982), no. 3, 503–521. MR**679069** - Graeme Segal,
*Configuration-spaces and iterated loop-spaces*, Invent. Math.**21**(1973), 213–221. MR**331377**, DOI 10.1007/BF01390197 - L. C. Siebenmann,
*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271–294. MR**295365**, DOI 10.1016/0040-9383(72)90014-6 - J. W. T. Youngs,
*Homeomorphic approximations to monotone mappings*, Duke Math. J.**15**(1948), 87–94. MR**24623**

## Bibliographic Information

**George Raptis**- Affiliation: Institut für Mathematik, Universität Osnabrück, Albrechtstrasse 28a, 49069 Osnabrück, Germany
- Email: graptis@mathematik.uni-osnabrueck.de
- Received by editor(s): April 30, 2010
- Received by editor(s) in revised form: May 11, 2010
- Published electronically: October 6, 2010
- Communicated by: Brooke Shipley
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**139**(2011), 1879-1887 - MSC (2010): Primary 55R80; Secondary 57N99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10580-4
- MathSciNet review: 2763775